Marco Bonvini

DESY Hamburg

LHCP, Barcelona, May 14, 2013

Work in collaboration with: Richard Ball, Stefano Forte, Simone Marzani, Giovanni Ridolfi arXiv:1303.3590

Convergence is slow! NNLO not definitive.

1

$$\sigma(\tau) = \tau \, \sigma_0 \sum_{ij} \int_{\tau}^1 \frac{dz}{z} \, \mathscr{L}_{ij}\left(\frac{\tau}{z}\right) C_{ij}(z, \alpha_s), \qquad \tau = \frac{m_H^2}{s}, \qquad z = \frac{m_H^2}{\hat{s}}$$

 $C_{ij}(z,\alpha_s) = \delta_{ig}\delta_{jg}\delta(1-z) + \alpha_s C_{ij}^{(1)}(z) + \alpha_s^2 C_{ij}^{(2)}(z) + \alpha_s^3 C_{ij}^{(3)}(z) + \dots$

$$\sigma(\tau) = \tau \,\sigma_0 \sum_{ij} \int_{\tau}^{1} \frac{dz}{z} \,\mathscr{L}_{ij}\left(\frac{\tau}{z}\right) C_{ij}(z,\alpha_s), \qquad \tau = \frac{m_H^2}{s}, \qquad z = \frac{m_H^2}{\hat{s}}$$
$$C_{ij}(z,\alpha_s) = \delta_{ig} \delta_{jg} \delta(1-z) + \alpha_s \, C_{ij}^{(1)}(z) + \alpha_s^2 \, C_{ij}^{(2)}(z) + \alpha_s^3 \, C_{ij}^{(3)}(z) + \dots$$

• NLO $C_{ij}^{(1)}(z)$:

- large $m_t \ (\gg m_H)$ approximation
- full m_t dependence

[Dawson 1991; Djouadi, Spira, Zerwas 1991] [Spira, Djouadi, Graudenz, Zerwas 1995]

$$\sigma(\tau) = \tau \,\sigma_0 \sum_{ij} \int_{\tau}^{1} \frac{dz}{z} \,\mathscr{L}_{ij}\left(\frac{\tau}{z}\right) C_{ij}(z,\alpha_s), \qquad \tau = \frac{m_H^2}{s}, \qquad z = \frac{m_H^2}{\hat{s}}$$
$$C_{ij}(z,\alpha_s) = \delta_{ig} \delta_{jg} \delta(1-z) + \alpha_s \, C_{ij}^{(1)}(z) + \alpha_s^2 \, C_{ij}^{(2)}(z) + \alpha_s^3 \, C_{ij}^{(3)}(z) + \dots$$

- NLO $C_{ij}^{(1)}(z)$:
 - large $m_t \ (\gg m_H)$ approximation
 - full m_t dependence

[Dawson 1991; Djouadi, Spira, Zerwas 1991] [Spira, Djouadi, Graudenz, Zerwas 1995]

• NNLO $C_{ij}^{(2)}(z)$:

• large m_t approximation [Harlander, Kilgore 2002; Anastasiou, Melnikov 2002] • expansion in m_H/m_t and in (1-z) [Harlander, Ozeren 2009] • expansion in m_H/m_t [Pak, Rogal, Steinhauser 2010]

• finite m_t small-z behavior [Marzani, Ball, Del Duca, Forte, Vicini 2008]

$$\sigma(\tau) = \tau \,\sigma_0 \sum_{ij} \int_{\tau}^{1} \frac{dz}{z} \,\mathscr{L}_{ij}\left(\frac{\tau}{z}\right) C_{ij}(z,\alpha_s), \qquad \tau = \frac{m_H^2}{s}, \qquad z = \frac{m_H^2}{\hat{s}}$$
$$C_{ij}(z,\alpha_s) = \delta_{ig} \delta_{jg} \delta(1-z) + \alpha_s \, C_{ij}^{(1)}(z) + \alpha_s^2 \, C_{ij}^{(2)}(z) + \alpha_s^3 \, C_{ij}^{(3)}(z) + \dots$$

- NLO $C_{ij}^{(1)}(z)$:
 - large $m_t \ (\gg m_H)$ approximation
 - full m_t dependence

[Dawson 1991; Djouadi, Spira, Zerwas 1991] [Spira, Djouadi, Graudenz, Zerwas 1995]

• NNLO $C_{ij}^{(2)}(z)$:

- large m_t approximation [Harlander, Kilgore 2002; Anastasiou, Melnikov 2002]
- expansion in m_H/m_t and in (1-z) [Harlander, Ozeren 2009]
- expansion in m_H/m_t
 - finite m_t small-z behavior [Marzani, Ball, De

[Pak, Rogal, Steinhauser 2010]

[Marzani, Ball, Del Duca, Forte, Vicini 2008]

• NNNLO $C_{ij}^{(3)}(z)$:

- soft approximation in the large m_t limit [Moch, Vogt, 2005]
- large m_t as an expansion in (1-z) [Anastasiou, Duhr, Dulat, Mistlberger 2013+]

$$\sigma(\tau) = \tau \, \sigma_0 \sum_{ij} \int_{\tau}^{1} \frac{dz}{z} \, \mathscr{L}_{ij}\left(\frac{\tau}{z}\right) C_{ij}(z, \alpha_s), \qquad \tau = \frac{m_H^2}{s}, \qquad z = \frac{m_H^2}{\hat{s}}$$
$$C_{ij}(z, \alpha_s) = \delta_{ig} \delta_{jg} \delta(1-z) + \alpha_s \, C_{ij}^{(1)}(z) + \alpha_s^2 \, C_{ij}^{(2)}(z) + \alpha_s^3 \, C_{ij}^{(3)}(z) + \dots$$

- NLO $C_{ij}^{(1)}(z)$:
 - large $m_t \ (\gg m_H)$ approximation
 - full m_t dependence

[Dawson 1991; Djouadi, Spira, Zerwas 1991] [Spira, Djouadi, Graudenz, Zerwas 1995]

• NNLO $C_{ij}^{(2)}(z)$:

- large m_t approximation [Harlander, Kilgore 2002; Anastasiou, Melnikov 2002]
- expansion in m_H/m_t and in (1-z) [Harlander, Ozeren 2009]
- ullet expansion in m_H/m_t
 - finite m_t small-z behavior [Marz
- [Pak, Rogal, Steinhauser 2010] [Marzani, Ball, Del Duca, Forte, Vicini 2008]

- NNNLO $C_{ij}^{(3)}(z)$:
 - soft approximation in the large m_t limit [Moch, Vogt, 2005]
 - large m_t as an expansion in (1-z) [Anastasiou, Duhr, Dulat, Mistlberger 2013+]
- NNLO + NNLL resummation

[de Florian, Grazzini 2012]

$$\sigma(\tau) = \tau \,\sigma_0 \sum_{ij} \int_{\tau}^{1} \frac{dz}{z} \,\mathscr{L}_{ij}\left(\frac{\tau}{z}\right) C_{ij}(z,\alpha_s), \qquad \tau = \frac{m_H^2}{s}, \qquad z = \frac{m_H^2}{\hat{s}}$$
$$C_{ij}(z,\alpha_s) = \delta_{ig} \delta_{jg} \delta(1-z) + \alpha_s \, C_{ij}^{(1)}(z) + \alpha_s^2 \, C_{ij}^{(2)}(z) + \alpha_s^3 \, C_{ij}^{(3)}(z) + \dots$$

- NLO $C_{ii}^{(1)}(z)$:
 - large $m_t \ (\gg m_H)$ approximation
 - full m_t dependence

[Dawson 1991; Djouadi, Spira, Zerwas 1991] [Spira, Djouadi, Graudenz, Zerwas 1995]

• NNLO $C_{ii}^{(2)}(z)$:

- large m_t approximation [Harlander, Kilgore 2002; Anastasiou, Melnikov 2002]
- expansion in m_H/m_t and in (1-z)[Harlander, Ozeren 2009] [Pak, Rogal, Steinhauser 2010]
- expansion in m_H/m_t
 - finite m_t small-z behavior [Marzani, Ball, Del Duca, Forte, Vicini 2008]
- NNNLO $C_{ii}^{(3)}(z)$: ightarrow
 ightarro
 - soft approximation in the large m_t limit [Moch, Vogt, 2005]
 - large m_t as an expansion in (1-z) [Anastasiou, Duhr, Dulat, Mistlberger 2013+]

NNLO + NNLL resummation

[de Florian, Grazzini 2012]

Ingredients of our N³LO prediction

gg channel only:

$$egin{aligned} C_{gg}(z,lpha_s) \ &\simeq \ C_{
m soft}(z,lpha_s) \ + \ C_{
m high-energy}(z,lpha_s) \ &z
ightarrow 1 \qquad z
ightarrow 0 \end{aligned}$$

Ingredients of our N³LO prediction

gg channel only:

$$C_{gg}(z, \alpha_s) \simeq C_{\text{soft}}(z, \alpha_s) + C_{\text{high-energy}}(z, \alpha_s)$$

 $z \rightarrow 1 \qquad z \rightarrow 0$

Outline:

- construction of $C_{\text{soft}}(z, \alpha_s)$ and $C_{\text{high-energy}}(z, \alpha_s)$
- comparison against known NLO and NNLO
- results at NNNLO

Ingredients of our N³LO prediction

gg channel only:

 $\begin{array}{ll} C_{gg}(z,\alpha_s) \ \simeq \ C_{\rm soft}(z,\alpha_s) \ + \ C_{\rm high-energy}(z,\alpha_s) \\ \\ z \rightarrow 1 & z \rightarrow 0 \\ \\ N \rightarrow \infty & N \rightarrow 1 \end{array}$

Outline:

- construction of $C_{\text{soft}}(z, \alpha_s)$ and $C_{\text{high-energy}}(z, \alpha_s)$
- comparison against known NLO and NNLO
- results at NNNLO

Mellin space:
$$C_{gg}(N, \alpha_s) = \int_0^1 dz \ z^{N-1} C_{gg}(z, \alpha_s)$$

Leading Log poles in $C_{gg}(N, \alpha_s)$:

$$\frac{\alpha_s^k}{(N-1)^k}$$

Leading Log poles in $C_{gg}(N, \alpha_s)$: $\frac{\alpha_s^k}{(N-1)^k}$ $\left(\alpha_s^k \frac{\log^{k-1} z}{z}\right)$

$$C_{\mathsf{high-energy}}(N,\alpha_s) = \sum_{k_1,k_2 \ge 0} c_{k_1,k_2} \left(\frac{m_H}{m_t}\right) \left[\gamma_+^{k_1}\right] \left[\gamma_+^{k_2}\right]$$

 $\gamma_+(N)$: DGLAP anomalous dimension (largest eigenvalue) [Marzani, Ball, Del Duca, Forte, Vicini 2008]

Leading Log poles in $C_{gg}(N, \alpha_s)$: $\frac{\alpha_s^k}{(N-1)^k} \qquad \left(\alpha_s^k \frac{\log^{k-1} z}{z}\right)$

$$C_{\mathsf{high-energy}}(N,\alpha_s) = \sum_{k_1,k_2 \ge 0} c_{k_1,k_2}(\frac{m_H}{m_t}) \left[\gamma_+^{k_1}\right] \left[\gamma_+^{k_2}\right]$$

 $\gamma_+(N)$: DGLAP anomalous dimension (largest eigenvalue) [Marzani, Ball, Del Duca, Forte, Vicini 2008]

Properties:

• valid at LL (with running coupling effects)

Leading Log poles in $C_{gg}(N, \alpha_s)$: $\frac{\alpha_s^k}{(N-1)^k}$ $\left(\alpha_s^k \frac{\log^{k-1} z}{z}\right)$

$$C_{\mathsf{high-energy}}(N,\alpha_s) = \sum_{k_1,k_2 \ge 0} c_{k_1,k_2}(\frac{m_H}{m_t}) \left[\gamma_+^{k_1}\right] \left[\gamma_+^{k_2}\right]$$

 $\gamma_+(N)$: DGLAP anomalous dimension (largest eigenvalue) [Marzani, Ball, Del Duca, Forte, Vicini 2008]

Properties:

- valid at LL (with running coupling effects)
- we use an expansion of $\gamma_+(N)$ to NLL

Leading Log poles in $C_{gg}(N, \alpha_s)$: $\frac{\alpha_s^k}{(N-1)^k}$ $\left(\alpha_s^k \frac{\log^{k-1} z}{z}\right)$

$$C_{\mathsf{high-energy}}(N,\alpha_s) = \sum_{k_1,k_2 \ge 0} c_{k_1,k_2}(\frac{m_H}{m_t}) \big[\gamma_+^{k_1}\big] \big[\gamma_+^{k_2}\big]$$

 $\gamma_+(N)$: DGLAP anomalous dimension (largest eigenvalue) [Marzani, Ball, Del Duca, Forte, Vicini 2008]

Properties:

- valid at LL (with running coupling effects)
- we use an expansion of $\gamma_+(N)$ to NLL
- momentum conservation $C_{\text{high-energy}}(N=2,\alpha_s)=0$

Soft part: C_{soft}

From soft-gluon (threshold) resummation

$$C_{gg}(N,\alpha_s) \stackrel{N \to \infty}{=} g_0\left(\alpha_s, \frac{m_H}{m_t}\right) \exp\left[\frac{1}{\alpha_s}g_1(\alpha_s \ln N) + g_2(\alpha_s \ln N) + \alpha_s g_3(\alpha_s \ln N) + \dots\right]$$

Soft part: C_{soft}

From soft-gluon (threshold) resummation

 $C_{gg}(N,\alpha_s) \stackrel{N \to \infty}{=} g_0\left(\alpha_s, \frac{m_H}{m_t}\right) \exp\left[\frac{1}{\alpha_s}g_1(\alpha_s \ln N) + g_2(\alpha_s \ln N) + \alpha_s g_3(\alpha_s \ln N) + \dots\right]$

in z-space linear combination of

of
$$\left(\frac{\log^k \log \frac{1}{z}}{\log \frac{1}{z}}\right)_+$$

Soft part: C_{soft}

From soft-gluon (threshold) resummation

 $C_{gg}(N,\alpha_s) \stackrel{N \to \infty}{=} g_0\left(\alpha_s, \frac{m_H}{m_t}\right) \exp\left[\frac{1}{\alpha_s}g_1(\alpha_s \ln N) + g_2(\alpha_s \ln N) + \alpha_s g_3(\alpha_s \ln N) + \dots\right]$

+

in
$$z$$
-space linear combination of $\left(rac{\log^k \log rac{1}{z}}{\log rac{1}{z}}
ight)$

Our improvements:

• we use the correct logs (from kinematics):

$$\left(\frac{\log^k \frac{1-z}{\sqrt{z}}}{1-z}\right)_+$$

Soft part: C_{soft}

From soft-gluon (threshold) resummation

 $C_{gg}(N,\alpha_s) \stackrel{N \to \infty}{=} g_0\left(\alpha_s, \frac{m_H}{m_t}\right) \exp\left[\frac{1}{\alpha_s}g_1(\alpha_s \ln N) + g_2(\alpha_s \ln N) + \alpha_s g_3(\alpha_s \ln N) + \dots\right]$

in z-space linear combination of
$$\left(\frac{\log^k \log \frac{1}{z}}{\log \frac{1}{z}}\right)$$

Our improvements:

• we use the correct logs (from kinematics):

$$\left(\frac{\log^k \frac{1-z}{\sqrt{z}}}{1-z}\right)_+$$

• we supply each emission with the Altarelli-Parisi splitting

$$P_{gg} = \frac{C_A}{\pi} \frac{1 - 2z + 3z^2 - 2z^3 + z^4}{z (1 - z)} \qquad (z < 1)$$

(avoiding double counting)

[Krämer, Laenen, Spira 1997]

 $C_{gg}(N,\alpha_s) = 1 + \alpha_s C^{(1)}(N) + \alpha_s^2 C^{(2)}(N) + \alpha_s^3 C^{(3)}(N) + \dots$

Marco Bonvini

Higgs production in gluon fusion beyond NNLO

$$C_{gg}(N,\alpha_s) = 1 + \alpha_s C^{(1)}(N) + \alpha_s^2 C^{(2)}(N) + \alpha_s^3 C^{(3)}(N) + \dots$$

Marco Bonvini

Higgs production in gluon fusion beyond NNLO

$$C_{gg}(N,\alpha_s) = 1 + \alpha_s C^{(1)}(N) + \alpha_s^2 C^{(2)}(N) + \alpha_s^3 C^{(3)}(N) + \dots$$

Marco Bonvini

Higgs production in gluon fusion beyond NNLO

 $C_{gg}(N,\alpha_s) = 1 + \alpha_s C^{(1)}(N) + \alpha_s^2 C^{(2)}(N) + \alpha_s^3 C^{(3)}(N) + \dots$

N-soft: [Moch, Vogt, 2005], expanded resummation [de Florian, Grazzini 2012]

Marco Bonvini

Conclusions

• We are predicting the inclusive Higgs N³LO cross section using

$$C_{gg}^{(3)}(z) \simeq C_{\rm soft}^{(3)}(z) + C_{\rm high-energy}^{(3)}(z)$$

- exact m_t dependence
- improved soft approximation (kinematical logs and AP splittings)
- high-energy behavior at LL plus some NLL elements

Conclusions

• We are predicting the inclusive Higgs N³LO cross section using

$$C_{gg}^{(3)}(z) \simeq C_{\rm soft}^{(3)}(z) + C_{\rm high-energy}^{(3)}(z)$$

- exact m_t dependence
- improved soft approximation (kinematical logs and AP splittings)
- high-energy behavior at LL plus some NLL elements
- We find $(m_H = 125 \text{ GeV}, \text{ LHC at } 8 \text{ TeV})$
 - \bullet an increase of $\sim 17\%$ wrt the NNLO cross section
 - dramatic stabilization of scale dependence

Conclusions

• We are predicting the inclusive Higgs N³LO cross section using

$$C_{gg}^{(3)}(z) \simeq C_{\rm soft}^{(3)}(z) + C_{\rm high-energy}^{(3)}(z)$$

- exact m_t dependence
- improved soft approximation (kinematical logs and AP splittings)
- high-energy behavior at LL plus some NLL elements
- We find $(m_H = 125 \text{ GeV}, \text{ LHC at } 8 \text{ TeV})$
 - \bullet an increase of $\sim 17\%$ wrt the NNLO cross section
 - dramatic stabilization of scale dependence
- Public code: http://www.ge.infn.it/~bonvini/higgs/

• We are predicting the inclusive Higgs N³LO cross section using

$$C_{gg}^{(3)}(z) \simeq C_{\rm soft}^{(3)}(z) + C_{\rm high-energy}^{(3)}(z)$$

- exact m_t dependence
- improved soft approximation (kinematical logs and AP splittings)
- high-energy behavior at LL plus some NLL elements
- We find $(m_H = 125 \text{ GeV}, \text{LHC at } 8 \text{ TeV})$
 - \bullet an increase of $\sim 17\%$ wrt the NNLO cross section
 - dramatic stabilization of scale dependence
- Public code: http://www.ge.infn.it/~bonvini/higgs/
- What's next?
 - the $\delta(1-z)$ term at order α_s^3
 - subleading high-energy terms
 - other channels (at NNLO the qg channel gives a 10% contribution)
 - resummation

Backup slides

Scale dependence

Scale dependence

K-factors (NNLO pdfs)

K-factors (NNLO pdfs)

K-factors (NNLO pdfs)

 $13 {\rm ~TeV}$

Higgs hadron-level cross section

Soft approximations

Soft approximations

Soft approximations

Saddle point

