Effective Higgs Lagrangian
 based on arXiv:1303.3876
 In collaboration with:
 R. Contino, C. Grojean, M. Mühlleitner, M. Spira

Margherita Ghezzi

LHCP 2013, Barcelona, May 13th

Introduction

In absence of a direct observation of new particles, our ignorance of the EWSB sector can be parametrized in terms of an effective Lagrangian

Bottom-up approach: the couplings of the operators are free parameters; if new particles are discovered they can be included in the Lagrangian

The detailed form of the Lagrangian depends on which assumptions are made

Assumptions:

- $S U(2)_{\iota} \times U(1)_{Y}$ is linearly realized at high energies
- $h(x)$ is a scalar and it is part of an $S U(2)_{L}$ doublet $H(x)$
- $h(x)$ is CP-even
- flavour alignment to avoid FCNC

Introduction

In absence of a direct observation of new particles, our ignorance of the EWSB sector can be parametrized in terms of an effective Lagrangian

Bottom-up approach: the couplings of the operators are free parameters; if new particles are discovered they can be included in the Lagrangian

The detailed form of the Lagrangian depends on which assumptions are made

Assumptions:

- $S U(2)_{\perp} \times U(1)_{Y}$ is linearly realized at high energies
- $h(x)$ is a scalar and it is part of an $S U(2)_{L}$ doublet $H(x)$
- $h(x)$ is CP-even
- flavour alignment to avoid FCNC

Introduction

In absence of a direct observation of new particles, our ignorance of the EWSB sector can be parametrized in terms of an effective Lagrangian

Bottom-up approach: the couplings of the operators are free parameters; if new particles are discovered they can be included in the Lagrangian

The detailed form of the Lagrangian depends on which assumptions are made

Assumptions:

- $S U(2)_{L} \times U(1)_{Y}$ is linearly realized at high energies
- $h(x)$ is a scalar and it is part of an $S U(2)_{\perp}$ doublet $H(x)$
- $h(x)$ is CP-even
- flavour alignment to avoid FCNC

Introduction

In absence of a direct observation of new particles, our ignorance of the EWSB sector can be parametrized in terms of an effective Lagrangian

Bottom-up approach: the couplings of the operators are free parameters; if new particles are discovered they can be included in the Lagrangian

The detailed form of the Lagrangian depends on which assumptions are made

Assumptions:

- $S U(2)_{L} \times U(1)_{Y}$ is linearly realized at high energies
- $h(x)$ is a scalar and it is part of an $S U(2)_{L}$ doublet $H(x)$
- $h(x)$ is CP-even
- flavour alignment to avoid FCNC

Effective Higgs Lagrangian

The list of dim-6 operators of Effective Lagrangian has been known since long time:

A more recent complete and minimal classification:

Here we will follow the parametrization of:

Buchmüller and Wyler NPB 268 (1986) 621

Grzadkowski, Iskrzynski, Misiak, Rosiek JHEP 1010 (2010) 085

Giudice, Grojean, Pomarol, Rattazzi JHEP 0706 (2007) 045

Power counting:

- a factor $1 / M$ for each extra derivative
- a factor $g_{*} / M \equiv 1 / f$ for each extra power of $H(x)$

Effective Higgs Lagrangian

The list of dim-6 operators of Effective Lagrangian has been known since long time:

A more recent complete and minimal classification:

Here we will follow the parametrization of:

Buchmüller and Wyler NPB 268 (1986) 621

Grzadkowski, Iskrzynski, Misiak, Rosiek JHEP 1010 (2010) 085

Giudice, Grojean, Pomarol, Rattazzi JHEP 0706 (2007) 045

Power counting:

- a factor $1 / M$ for each extra derivative
- a factor $g_{*} / M \equiv 1 / f$ for each extra power of $H(x)$

Effective Higgs Lagrangian

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum_{i} \bar{c}_{i} O_{i} \equiv \mathcal{L}_{S M}+\Delta \mathcal{L}_{S I L H}+\Delta \mathcal{L}_{F_{1}}+\Delta \mathcal{L}_{F_{2}}
$$

$$
\begin{aligned}
\Delta \mathcal{L}_{S I L H}= & \frac{\bar{c}_{H}}{2 v^{2}} \partial^{\mu}\left(H^{\dagger} H\right) \partial_{\mu}\left(H^{\dagger} H\right)+\frac{\bar{c}_{T}}{2 v^{2}}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right)\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)-\frac{\bar{c}_{6} \lambda}{v^{2}}\left(H^{\dagger} H\right)^{3} \\
& +\left(\frac{\bar{c}_{U}}{v^{2}} y_{u} H^{\dagger} H \bar{q}_{L} H^{c} u_{R}+\frac{\bar{c}_{d}}{v^{2}} y_{d} H^{\dagger} H \bar{q}_{L} H d_{R}+\frac{\bar{c}_{l}}{v^{2}} y_{l} H^{\dagger} H \bar{L}_{L} H H_{R}+\text { h.c. }\right) \\
& +\frac{i \bar{c}_{W} g}{2 m_{W}^{2}}\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D^{\mu}} H\right)\left(D^{\nu} W_{\mu \nu}\right)^{i}+\frac{i \bar{c}_{B} g^{\prime}}{2 m_{W}^{2}}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right)\left(\partial^{\nu} B_{\mu \nu}\right) \\
& +\frac{i \bar{c}_{H W} g}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}+\frac{i \bar{c}_{H B} g^{\prime}}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu} \\
& +\frac{\bar{c}_{\gamma} g^{\prime 2}}{m_{W}^{2}} H^{\dagger} H B_{\mu \nu} B^{\mu \nu}+\frac{\bar{c}_{g} g_{S}^{2}}{m_{W}^{2}} H^{\dagger} H G_{\mu \nu}^{a} G^{a \mu \nu}
\end{aligned}
$$

Effective Higgs Lagrangian

$$
\begin{aligned}
\Delta \mathcal{L}_{F_{1}}= & \frac{i \bar{c}_{H q}}{v^{2}}\left(\bar{q}_{L} \gamma^{\mu} q_{L}\right)\left(H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)+\frac{i \bar{c}_{H q}^{\prime}}{v^{2}}\left(\bar{q}_{L} \gamma^{\mu} \sigma^{i} q_{L}\right)\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D}_{\mu} H\right) \\
& +\frac{i \bar{c}_{H u}}{v^{2}}\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)+\frac{i \bar{c}_{H d}}{v^{2}}\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)\left(H^{\dagger} \overleftrightarrow{D}_{\mu} H\right) \\
& +\left(\frac{i \bar{c}_{H u d}}{v^{2}}\left(\bar{u}_{R} \gamma^{\mu} d_{R}\right)\left(H^{c \dagger} \overleftrightarrow{D}_{\mu} H\right)+\text { h.c. }\right) \\
& +\frac{i \bar{c}_{H L}}{v^{2}}\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)+\frac{i \bar{c}_{H L}^{\prime}}{v^{2}}\left(\bar{L}_{L} \gamma^{\mu} \sigma^{i} L_{L}\right)\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D}_{\mu} H\right) \\
& +\frac{i \bar{c}_{H I}}{v^{2}}\left(\bar{l}_{R} \gamma^{\mu} l_{R}\right)\left(H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)
\end{aligned}
$$

$$
\begin{aligned}
\Delta \mathcal{L}_{F_{2}}= & \frac{\bar{c}_{u B} g^{\prime}}{m_{W}^{2}} y_{u} \bar{q}_{L} H^{c} \sigma^{\mu \nu} u_{R} B_{\mu \nu}+\frac{\bar{c}_{u W} g}{m_{W}^{2}} y_{u} \bar{q}_{L} \sigma^{i} H^{c} \sigma^{\mu \nu} u_{R} w_{\mu \nu}^{i}+\frac{\bar{c}_{u G} g_{S}}{m_{W}^{2}} y_{u} \bar{q}_{L} H^{c} \sigma^{\mu \nu} \lambda^{a} u_{R} G_{\mu \nu}^{a} \\
& +\frac{\bar{c}_{d B} g^{\prime}}{m_{W}^{2}} y_{d} \bar{q}_{L} H \sigma^{\mu \nu} d_{R} B_{\mu \nu}+\frac{\bar{c}_{d W} g}{m_{W}^{2}} y_{d} \bar{q}_{L} \sigma^{i} H \sigma^{\mu \nu} d_{R} w_{\mu \nu}^{i}+\frac{\bar{c}_{d G} g_{S}}{m_{W}^{2}} y_{d} \bar{q}_{L} H \sigma^{\mu \nu} \lambda^{a} d_{R} G_{\mu \nu}^{a} \\
& +\frac{\bar{c}_{I B} g^{\prime}}{m_{W}^{2}} y_{l} \bar{L}_{L} H \sigma^{\mu \nu} I_{R} B_{\mu \nu}+\frac{\bar{c}_{I W} g}{m_{W}^{2}} y_{l} \bar{L}_{L} \sigma^{i} H \sigma^{\mu \nu} I_{R} w_{\mu \nu}^{i}+\text { h.c. }
\end{aligned}
$$

How many operators?

Effective Higgs Lagrangian:

- $12\left(\Delta \mathcal{L}_{\text {SILH }}\right)+8\left(\Delta \mathcal{L}_{F_{1}}\right)+8\left(\Delta \mathcal{L}_{F_{2}}\right)=28$
- 2 linear combinations of $\Delta \mathcal{L}_{F_{1}}$ are equivalent to pure oblique corrections 26 independent operators

Operators that do not affect Higgs physics:

- 5 bosonic operators
- 22 four-fermion baryon-number-conserving operators

27 independent operators

CP-odd operators:

$$
\begin{aligned}
\Delta \mathcal{L}_{C P}= & \frac{i \tilde{c}_{H W} g}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) \tilde{W}_{\mu \nu}^{i}+\frac{i \tilde{c}_{H B} g^{\prime}}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) \tilde{B}_{\mu \nu} \\
& +\frac{\tilde{c}_{\gamma} g^{\prime 2}}{m_{W}^{2}} H^{\dagger} H B_{\mu \nu} \tilde{B}^{\mu \nu}+\frac{\tilde{c}_{g} g_{S}^{2}}{m_{W}^{2}} H^{\dagger} H G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu} \\
& +\frac{\tilde{c}_{3} W g^{3}}{m_{W}^{2}} \epsilon^{i j k} W_{\mu}^{i \nu} W_{\nu}^{j \rho} \tilde{W}_{\rho}^{k \mu}+\frac{\tilde{C}_{3 G} g_{S}^{3}}{m_{W}^{2}} f^{a b c} G_{\mu}^{a \nu} G_{\nu}^{b \rho} \tilde{G}_{\rho}^{c \mu},
\end{aligned}
$$

$$
\begin{aligned}
& 26+27+6=59 \\
& \text { independent, } \\
& 6 \text {-dimensional } \\
& \text { operators }
\end{aligned}
$$

How many operators?

Effective Higgs Lagrangian:

- $12\left(\Delta \mathcal{L}_{\text {SILH }}\right)+8\left(\Delta \mathcal{L}_{F_{1}}\right)+8\left(\Delta \mathcal{L}_{F_{2}}\right)=28$
- 2 linear combinations of $\Delta \mathcal{L}_{F_{1}}$ are equivalent to pure oblique corrections 26 independent operators

Operators that do not affect Higgs physics:

- 5 bosonic operators
- 22 four-fermion baryon-number-conserving operators

27 independent operators

CP-odd operators:

$$
\begin{aligned}
\Delta \mathcal{L}_{C P}= & \frac{i \tilde{c}_{H W} g}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) \tilde{W}_{\mu \nu}^{i}+\frac{i \tilde{c}_{H B} g^{\prime}}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) \tilde{B}_{\mu \nu} \\
& +\frac{\tilde{c}_{\gamma} g^{\prime 2}}{m_{W}^{2}} H^{\dagger} H B_{\mu \nu} \tilde{B}^{\mu \nu}+\frac{\tilde{c}_{g} g_{S}^{2}}{m_{W}^{2}} H^{\dagger} H G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu} \\
& +\frac{\tilde{c}_{3 W} g^{3}}{m_{W}^{2}} \epsilon^{i j k} W_{\mu}^{i \nu} W_{\nu}^{j \rho} \tilde{W}_{\rho}^{k \mu}+\frac{\tilde{c}_{3 G} g_{S}^{3}}{m_{W}^{2}} f^{a b c} G_{\mu \nu}^{a \nu} G_{\nu}^{b \rho} \tilde{G}_{\rho}^{c \mu},
\end{aligned}
$$

$26+27+6=59$
independent,
6-dimensional
operators

How many operators?

Effective Higgs Lagrangian:

- $12\left(\Delta \mathcal{L}_{\text {SILH }}\right)+8\left(\Delta \mathcal{L}_{F_{1}}\right)+8\left(\Delta \mathcal{L}_{F_{2}}\right)=28$
- 2 linear combinations of $\Delta \mathcal{L}_{F_{1}}$ are equivalent to pure oblique corrections 26 independent operators

Operators that do not affect Higgs physics:

- 5 bosonic operators
- 22 four-fermion baryon-number-conserving operators

27 independent operators

CP-odd operators:

$$
\begin{aligned}
\Delta \mathcal{L}_{C P}= & \frac{i \tilde{c}_{H W} g}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) \tilde{w}_{\mu \nu}^{i}+\frac{i \tilde{c}_{H B} g^{\prime}}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) \tilde{B}_{\mu \nu} \\
& +\frac{\tilde{c}_{\gamma} g^{\prime 2}}{m_{W}^{2}} H^{\dagger} H B_{\mu \nu} \tilde{B}^{\mu \nu}+\frac{\tilde{c}_{g} g_{S}^{2}}{m_{W}^{2}} H^{\dagger} H G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu} \\
& +\frac{\tilde{c}_{3} W g^{3}}{m_{W}^{2}} \epsilon^{i j k} W_{\mu}^{i \nu} W_{\nu}^{j \rho} \tilde{w}_{\rho}^{k \mu}+\frac{\tilde{c}_{3 G} g_{S}^{3}}{m_{W}^{2}} f^{a b c} G_{\mu}^{a \nu} G_{\nu}^{b \rho} \tilde{G}_{\rho}^{c \mu},
\end{aligned}
$$

$$
26+27+6=59
$$

independent,
6-dimensional
operators

6 independent operators

How many operators?

Effective Higgs Lagrangian:

- $12\left(\Delta \mathcal{L}_{\text {SILH }}\right)+8\left(\Delta \mathcal{L}_{F_{1}}\right)+8\left(\Delta \mathcal{L}_{F_{2}}\right)=28$
- 2 linear combinations of $\Delta \mathcal{L}_{F_{1}}$ are equivalent to pure oblique corrections 26 independent operators

Operators that do not affect Higgs physics:

- 5 bosonic operators
- 22 four-fermion baryon-number-conserving operators

27 independent operators

CP-odd operators:

$$
\begin{aligned}
\Delta \mathcal{L}_{C P}= & \frac{i \tilde{c}_{H W} g}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) \tilde{w}_{\mu \nu}^{i}+\frac{i \tilde{c}_{H B} g^{\prime}}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) \tilde{B}_{\mu \nu} \\
& +\frac{\tilde{c}_{\gamma} g^{\prime 2}}{m_{W}^{2}} H^{\dagger} H B_{\mu \nu} \tilde{B}^{\mu \nu}+\frac{\tilde{c}_{g} g_{S}^{2}}{m_{W}^{2}} H^{\dagger} H G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu} \\
& +\frac{\tilde{c}_{3} W g^{3}}{m_{W}^{2}} \epsilon^{i j k} W_{\mu}^{i \nu} W_{\nu}^{j \rho} \tilde{w}_{\rho}^{k \mu}+\frac{\tilde{c}_{3 G} g_{S}^{3}}{m_{W}^{2}} f^{a b c} G_{\mu}^{a \nu} G_{\nu}^{b \rho} \tilde{G}_{\rho}^{c \mu},
\end{aligned}
$$

$$
26+27+6=59
$$

independent,
6-dimensional operators

6 independent operators

How many operators?

- 2 linear combinations of $\Delta \mathcal{L}_{F_{1}}$ are equivalent to pure oblique corrections:

$$
O_{H \psi}^{Y} \equiv \sum_{\psi} Y_{\psi} O_{H \psi} \sim O_{T}, O_{B} \quad \text { and } \quad O_{H q}^{\prime}+O_{H L}^{\prime} \sim O_{W}
$$

By making use of the equations of motion

$$
i D^{\mu} W_{\mu \nu}^{i}=g H^{\dagger} \frac{\sigma^{i}}{2} \overleftrightarrow{D}_{\nu} H-i g \bar{\psi} \frac{\sigma^{i}}{2} \gamma_{\nu} \psi \quad i \partial^{\mu} B_{\mu \nu}=\frac{g^{\prime}}{2} H^{\dagger} \overleftrightarrow{D}_{\nu} H-i g^{\prime} \bar{\psi} Y \gamma_{\nu} \psi
$$

one can rewrite O_{W} and O_{B} as

$$
\begin{aligned}
O_{W} & =-2 O_{H}+\frac{4}{v^{2}}\left(H^{\dagger} H\right)\left|D_{\mu} H\right|^{2}+O_{H q}^{\prime}+O_{H L}^{\prime} \\
O_{B} & =2 \tan ^{2} \theta_{W}\left(-O_{T}+O_{H \psi}^{Y}\right)
\end{aligned}
$$

and upon the field redefinition $H \rightarrow H-2 \bar{c}_{W}\left(H^{\dagger} H\right) H / v^{2}$, one gets

$$
O_{W}=-6 O_{H}+2\left(O_{u}+O_{d}+O_{l}\right)-8 O_{6}+O_{H q}^{\prime}+O_{H L}^{\prime}
$$

How many operators?

- 2 linear combinations of $\Delta \mathcal{L}_{F_{1}}$ are equivalent to pure oblique corrections:

$$
O_{H \psi}^{Y} \equiv \sum_{\psi} Y_{\psi} O_{H \psi} \sim O_{T}, O_{B} \quad \text { and } \quad O_{H q}^{\prime}+O_{H L}^{\prime} \sim O_{W}
$$

By making use of the equations of motion

$$
i D^{\mu} W_{\mu \nu}^{i}=g H^{\dagger} \frac{\sigma^{i}}{2} \overleftrightarrow{D}_{\nu} H-i g \bar{\psi} \frac{\sigma^{i}}{2} \gamma_{\nu} \psi \quad i \partial^{\mu} B_{\mu \nu}=\frac{g^{\prime}}{2} H^{\dagger} \overleftrightarrow{D}_{\nu} H-i g^{\prime} \bar{\psi} Y \gamma_{\nu} \psi
$$

one can rewrite O_{W} and O_{B} as

$$
\begin{aligned}
O_{W} & =-2 O_{H}+\frac{4}{v^{2}}\left(H^{\dagger} H\right)\left|D_{\mu} H\right|^{2}+O_{H q}^{\prime}+O_{H L}^{\prime} \\
O_{B} & =2 \tan ^{2} \theta_{W}\left(-O_{T}+O_{H \psi}^{Y}\right)
\end{aligned}
$$

and upon the field redefinition $H \rightarrow H-2 \bar{c}_{W}\left(H^{\dagger} H\right) H / v^{2}$, one gets

$$
O_{W}=-6 O_{H}+2\left(O_{u}+O_{d}+O_{l}\right)-8 O_{6}+O_{H q}^{\prime}+O_{H L}^{\prime}
$$

How many operators?

$$
\begin{aligned}
O_{W} & =-6 O_{H}+2\left(O_{U}+O_{d}+O_{I}\right)-8 O_{6}+O_{H q}^{\prime}+O_{H L}^{\prime} \\
O_{B} & =2 \tan ^{2} \theta_{W}\left(-O_{T}+O_{H W}^{Y}\right)
\end{aligned}
$$

It is always possible to remove O_{W} and O_{B}
\Downarrow
coefficients of other operators are shifted: $\bar{c}_{i} \rightarrow \bar{c}_{i}+\Delta \bar{c}_{i}$

$$
\begin{gathered}
\Delta \bar{c}_{H}=-6 \bar{c}_{W} \quad \Delta \bar{c}_{T}=-2 \tan ^{2} \theta_{W} \bar{c}_{B} \quad \Delta \bar{c}_{6}=-8 \bar{c}_{W} \quad \Delta \bar{c}_{\psi}=2 \bar{c}_{W} \\
\Delta \bar{c}_{H q}^{\prime}=\Delta \bar{c}_{H L}^{\prime}=\bar{c}_{W} \\
6 \Delta \bar{c}_{H q}=\frac{3}{2} \Delta \bar{c}_{H u}=-3 \Delta \bar{c}_{H d}=-2 \Delta \bar{c}_{H L}=-\Delta \bar{c}_{H I}=-2 \tan ^{2} \theta_{W} \bar{c}_{B}
\end{gathered}
$$

- $\Delta \bar{c}_{T} \neq 0$: breaking of the custodial symmetry (unobservable)
- The contribution of O_{T} to $\Delta \epsilon_{1}$ is canceled by the vertex correction due to fermionic operators

How many operators?

$$
\begin{aligned}
& O_{W}=-6 O_{H}+2\left(O_{u}+O_{d}+O_{l}\right)-8 O_{6}+O_{H q}^{\prime}+O_{H L}^{\prime} \\
& O_{B}=2 \tan ^{2} \theta_{W}\left(-O_{T}+O_{H \Psi}^{Y}\right)
\end{aligned}
$$

It is always possible to remove O_{W} and O_{B} \Downarrow
coefficients of other operators are shifted: $\bar{c}_{i} \rightarrow \bar{c}_{i}+\Delta \bar{c}_{i}$

$$
\begin{gathered}
\Delta \bar{c}_{H}=-6 \bar{c}_{W} \quad \Delta \bar{c}_{T}=-2 \tan ^{2} \theta_{W} \bar{c}_{B} \quad \Delta \bar{c}_{6}=-8 \bar{c}_{W} \quad \Delta \bar{c}_{\psi}=2 \bar{c}_{W} \\
\Delta \bar{c}_{H q}^{\prime}=\Delta \bar{c}_{H L}^{\prime}=\bar{c}_{W} \\
6 \Delta \bar{c}_{H q}=\frac{3}{2} \Delta \bar{c}_{H u}=-3 \Delta \bar{c}_{H d}=-2 \Delta \bar{c}_{H L}=-\Delta \bar{c}_{H I}=-2 \tan ^{2} \theta_{W} \bar{c}_{B}
\end{gathered}
$$

- $\Delta \bar{c}_{T} \neq 0$: breaking of the custodial symmetry (unobservable)
- The contribution of O_{T} to $\Delta \epsilon_{1}$ is canceled by the vertex correction due to fermionic operators

How many operators?

$$
\begin{aligned}
O_{W} & =-6 O_{H}+2\left(O_{u}+O_{d}+O_{l}\right)-8 O_{6}+O_{H q}^{\prime}+O_{H L}^{\prime} \\
O_{B} & =2 \tan ^{2} \theta_{W}\left(-O_{T}+O_{H \psi}^{Y}\right)
\end{aligned}
$$

It is always possible to remove O_{W} and O_{B} \Downarrow
coefficients of other operators are shifted: $\overline{\bar{c}_{i} \rightarrow \bar{c}_{i}+\Delta \bar{c}_{i}}$

$$
\begin{gathered}
\Delta \bar{c}_{H}=-6 \bar{c}_{W} \quad \Delta \bar{c}_{T}=-2 \tan ^{2} \theta_{W} \bar{c}_{B} \quad \Delta \bar{c}_{6}=-8 \bar{c}_{W} \quad \Delta \bar{c}_{\psi}=2 \bar{c}_{W} \\
\Delta \bar{c}_{H q}^{\prime}=\Delta \bar{c}_{H L}^{\prime}=\bar{c}_{W} \\
6 \Delta \bar{c}_{H q}=\frac{3}{2} \Delta \bar{c}_{H u}=-3 \Delta \bar{c}_{H d}=-2 \Delta \bar{c}_{H L}=-\Delta \bar{c}_{H I}=-2 \tan ^{2} \theta_{W} \bar{c}_{B}
\end{gathered}
$$

- $\Delta \bar{c}_{T} \neq 0$: breaking of the custodial symmetry (unobservable)
- The contribution of O_{T} to $\Delta \epsilon_{1}$ is canceled by the vertex correction due to fermionic operators

Why this basis?

$$
\begin{aligned}
\Delta \mathcal{L}_{S I L H}= & \frac{\bar{c}_{H}}{2 v^{2}} \partial^{\mu}\left(H^{\dagger} H\right) \partial_{\mu}\left(H^{\dagger} H\right)+\frac{\bar{c}_{T}}{2 v^{2}}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right)\left(H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)-\frac{\bar{c}_{6} \lambda}{v^{2}}\left(H^{\dagger} H\right)^{3} \\
& +\left(\frac{\bar{c}_{U}}{v^{2}} y_{u} H^{\dagger} H \bar{q}_{L} H^{c} u_{R}+\frac{\bar{c}_{d}}{v^{2}} y_{d} H^{\dagger} H \bar{q}_{L} H d_{R}+\frac{\bar{c}_{l}}{v^{2}} y_{l} H^{\dagger} H \bar{L}_{L} H I_{R}+h . c .\right) \\
& +\frac{i \bar{c}_{W} g}{2 m_{W}^{2}}\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D^{\mu}} H\right)\left(D^{\nu} W_{\mu \nu}\right)^{i}+\frac{i \bar{c}_{B} g^{\prime}}{2 m_{W}^{2}}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right)\left(\partial^{\nu} B_{\mu \nu}\right) \\
& +\frac{i \bar{c}_{H W} g}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}+\frac{i \bar{c}_{H B} g^{\prime}}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu} \\
& +\frac{\bar{c}_{\gamma} g^{\prime 2}}{m_{W}^{2}} H^{\dagger} H B_{\mu \nu} B^{\mu \nu}+\frac{\bar{c}_{g} g_{S}^{2}}{m_{W}^{2}} H^{\dagger} H G_{\mu \nu}^{a} G^{a \mu \nu}
\end{aligned}
$$

- one can describe the oblique corrections in terms of $\Delta \mathcal{L}_{\text {SILH }}$ operators instead of operators with fermionic currents
- it isolates the contribution to the decays $h \rightarrow \gamma \gamma$ (from O_{γ}) and $h \rightarrow \gamma Z$ (from O_{γ} and $O_{H W}-O_{H B}$) that occur only at the radiative level in minimally coupled theories
- it is more appropriate to establish the nature of the Higgs boson and determine the strength of its interactions

Naive Dimensional Analysis

- a factor $1 / M$ for each extra derivative
- a factor $g_{*} / M \equiv 1 / f$ for each extra power of $H(x)$

$$
\begin{aligned}
& \bar{c}_{H}, \bar{c}_{T}, \bar{c}_{6}, \bar{c}_{\psi} \sim O\left(\frac{v^{2}}{f^{2}}\right) \quad \bar{c}_{W}, \bar{c}_{B} \sim O\left(\frac{m_{W}^{2}}{M^{2}}\right) \quad \bar{c}_{H W}, \bar{c}_{H B}, \bar{c}_{\gamma}, \bar{c}_{g} \sim O\left(\frac{m_{W}^{2}}{16 \pi^{2} f^{2}}\right) \\
& \bar{c}_{H \psi}, \bar{c}_{H \psi}^{\prime} \sim O\left(\frac{\lambda_{\psi}^{2}}{g_{*}^{2}} \frac{v^{2}}{f^{2}}\right) \quad \bar{c}_{H u d} \sim O\left(\frac{\lambda_{u} \lambda_{d}}{g_{*}^{2}} \frac{v^{2}}{f^{2}}\right) \quad \bar{c}_{\psi W}, \bar{c}_{\psi B}, \bar{c}_{\psi G} \sim O\left(\frac{m_{W}^{2}}{16 \pi^{2} f^{2}}\right)
\end{aligned}
$$

- $\bar{c}_{W, B}, \bar{c}_{H \psi}, \bar{c}_{H \psi}^{\prime}, \bar{c}_{T}$: valid when generated at tree-level
- $\bar{c}_{H W, H B, g, \gamma}$: suppressed by an additional loop factor $\left(g_{*}^{2} / 16 \pi^{2}\right)$
- strong dynamics: $g_{*} \gg 1 \Rightarrow f \ll M$
- weak dynamics: $g_{*} \sim g$
- leading New Physics effects: $O_{H, T, 6, \psi}$ (and fermionic operators if $\lambda_{\psi} \sim g_{*}$)

Naive Dimensional Analysis

- a factor $1 / M$ for each extra derivative
- a factor $g_{*} / M \equiv 1 / f$ for each extra power of $H(x)$

$$
\begin{array}{ll}
& \text { estimates valid at the UV scale M } \\
\bar{c}_{H}, \bar{c}_{T}, \bar{c}_{G}, \bar{c}_{\psi} \sim O\left(\frac{v^{2}}{f^{2}}\right) & \bar{c}_{W}, \bar{c}_{B} \sim O\left(\frac{m_{W}^{2}}{M^{2}}\right)
\end{array} \bar{c}_{H W}, \bar{c}_{H B}, \bar{c}_{\gamma}, \bar{c}_{g} \sim O\left(\frac{m_{W}^{2}}{16 \pi^{2} f^{2}}\right)
$$

- $\bar{c}_{W, B}, \bar{c}_{H \psi}, \bar{c}_{H \psi}^{\prime}, \bar{c}_{T}$: valid when generated at tree-level
- $\bar{c}_{H W, H B, g, \gamma}$: suppressed by an additional loop factor $\left(g_{*}^{2} / 16 \pi^{2}\right)$
- strong dynamics: $g_{*} \gg 1 \Rightarrow f \ll M$
- weak dynamics: $g_{*} \sim g$
- leading New Physics effects: $O_{H, T, 6, \psi}$ (and fermionic operators if $\lambda_{\psi} \sim g_{*}$)

Naive Dimensional Analysis

- a factor $1 / M$ for each extra derivative
- a factor $g_{*} / M \equiv 1 / f$ for each extra power of $H(x)$

$$
\begin{array}{ll}
& \text { estimates valid at the UV scale M } \\
\bar{c}_{H}, \bar{c}_{T}, \bar{c}_{6}, \bar{c}_{\psi} \sim O\left(\frac{v^{2}}{f^{2}}\right) & \bar{c}_{W}, \bar{c}_{B} \sim O\left(\frac{m_{W}^{2}}{M^{2}}\right)
\end{array} \quad \bar{c}_{H W}, \bar{c}_{H B}, \bar{c}_{\gamma}, \bar{c}_{g} \sim O\left(\frac{m_{W}^{2}}{16 \pi^{2} f^{2}}\right)
$$

- $\bar{c}_{W, B}, \bar{c}_{H \psi}, \bar{c}_{H \psi}^{\prime}, \bar{c}_{T}$: valid when generated at tree-level
- $\bar{c}_{H W, H B, g, \gamma}$: suppressed by an additional loop factor $\left(g_{*}^{2} / 16 \pi^{2}\right)$
- strong dynamics: $g_{*} \gg 1 \Rightarrow f \ll M$
- weak dynamics: $g_{*} \sim g$
- leading New Physics effects: $O_{H, T, 6, \psi}$ (and fermionic operators if $\lambda_{\psi} \sim g_{*}$)

Naive Dimensional Analysis

If the Higgs doublet is a composite Nambu-Goldstone boson of a spontaneously-broken symmetry $\mathcal{G} \rightarrow \mathcal{H}$:

$$
\begin{aligned}
& \frac{\bar{c}_{6} \lambda}{v^{2}}\left(H^{\dagger} H\right)^{3} \\
& \frac{\bar{c}_{\psi}}{v^{2}} y_{\psi} H^{\dagger} H \bar{\psi}_{L} H \psi_{R} \\
& \frac{\bar{c}_{\gamma} g^{\prime 2}}{m_{W}^{2}} H^{\dagger} H B_{\mu \nu} B^{\mu \nu} \\
& \frac{\bar{c}_{g} g_{S}^{2}}{m_{W}^{2}} H^{\dagger} H G_{\mu \nu}^{a} G^{a \mu \nu} \\
& \frac{\bar{c}_{\psi B} g^{\prime}}{m_{W}^{2}} y_{\psi} \bar{\psi}_{L} H \sigma^{\mu \nu} \psi_{R} B_{\mu \nu} \\
& \frac{\bar{c}_{\psi W} g}{m_{W}^{2}} y_{\psi} \bar{\psi}_{L} \sigma^{i} H \sigma^{\mu \nu} \psi_{R} W_{\mu \nu}^{i} \\
& \frac{\bar{c}_{\psi G} g_{S}}{m_{W}^{2}} y_{\psi} \bar{\psi}_{L} H \sigma^{\mu \nu} \lambda^{a} \psi_{R} G_{\mu \nu}^{a}
\end{aligned}
$$

These operators violate the shift symmetry

$$
H^{i} \rightarrow H^{i}+\zeta^{i}
$$

(part of the $\mathcal{G} / \mathcal{H}$ transformation)
\Downarrow
they cannot be generated in absence of an explicit breaking

$$
\Downarrow
$$

additional suppression factor $\frac{g_{q}^{2}}{g_{*}^{2}}$:

$$
\bar{c}_{\gamma}, \bar{c}_{g} \sim O\left(\frac{m_{W}^{2}}{16 \pi^{2} f^{2}}\right) \times \frac{g_{G}^{2}}{g_{*}^{2}}
$$

Bounds on flavour-preserving operators

95% of probability

$$
\begin{gathered}
-1.5 \times 10^{-3}<\bar{c}_{T}\left(m_{Z}\right)<2.2 \times 10^{-3} \\
-1.4 \times 10^{-3}<\bar{c}_{W}\left(m_{Z}\right)+\bar{c}_{B}\left(m_{Z}\right)<1.9 \times 10^{-3} \\
-0.02<\bar{c}_{H q 1}<0.03 \quad-0.002<\bar{c}_{H q 1}^{\prime}<0.003 \\
-0.003<\bar{c}_{H q 2}<0.005-0.003<\bar{c}_{H q 2}^{\prime}<0.005 \\
-0.008<\bar{c}_{H u}<0.02 \quad-0.03<\bar{c}_{H d}<0.02 \quad-0.03<\bar{c}_{H s}<0.02 \\
-0.0002<\bar{c}_{H L}+\bar{c}_{H L}^{\prime}<0.003-0.002<\bar{c}_{H L}-\bar{c}_{H L}^{\prime}<0.004 \\
-0.005<\bar{c}_{H q_{2}}-\bar{c}_{H q_{2}}^{\prime}<0.02 \quad-0.009<\bar{c}_{H q_{3}}+\bar{c}_{H q_{3}}^{\prime}<0.003 \\
-0.02<\bar{c}_{H c}<0.03 \quad-0.07<\bar{c}_{H b}<-0.005 \quad-0.0007<\bar{c}_{H 1}<0.003
\end{gathered}
$$

Bounds on flavour-preserving operators

95\% of probability

$$
\begin{gathered}
-7.01 \times 10^{-6}<\operatorname{Im}\left(\bar{c}_{u B}+\bar{c}_{u W}\right)<7.86 \times 10^{-6} \\
-1.62 \times 10^{-6}<\operatorname{Im}\left(\bar{c}_{u G}\right)<2.01 \times 10^{-6} \\
-9.42 \times 10^{-7}<\operatorname{Im}\left(\bar{c}_{d B}-\bar{c}_{d W}\right)<8.40 \times 10^{-7} \\
-7.71 \times 10^{-7}<\operatorname{Im}\left(\bar{c}_{d G}\right)<5.70 \times 10^{-7} \\
-1.39 \times 10^{-4}<\operatorname{Im}\left(\bar{c}_{t G}\right)<1.21 \times 10^{-4} \\
-0.057<\operatorname{Re}\left(\bar{c}_{t W}+\bar{c}_{t B}\right)-2.65 \operatorname{Im}\left(\bar{c}_{t W}+\bar{c}_{t B}\right)<0.20 \\
-6.12 \times 10^{-3}<\operatorname{Re}\left(\bar{c}_{t G}\right)<1.94 \times 10^{-3} \\
-1.2<\operatorname{Re}\left(\bar{c}_{b W}\right)<1.1, \quad-0.01<\operatorname{Re}\left(\bar{c}_{t W}\right)<0.02
\end{gathered}
$$

eHDECAY

http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/

- It has been obtained from extending HDECAY 5.10
- It allows for the calculation of the partial decay widths and branching ratios of the Higgs boson according to the effective Higgs Lagrangian
- QCD and EW higher order contributions are consistently included
- The non-linear extension of the effective Lagrangian is included, as well as the specific models MCHM4 and MCHM5.

Conclusions

- We have reviewed the construction of the effective Lagrangian for a light Higgs doublet.
- By means of a naive power counting we have estimated the coefficients of the various operators.
- This analysis allows one to identify which operators can probe the Higgs coupling strength to the new states and which instead are sensitive only to the mass scale M.
- It also gives the possibility to distinguish between weakly- coupled UV completions of the Standard Model (like SUSY) and theories where the EW symmetry is broken by a strongly-interacting dynamics which forms the Higgs boson as a bound state.
- We have shown the most important bounds set on them by present experimental results on electroweak (EW) and flavor observables.
- We have presented the program eHDECAY, an extension of HDECAY which allows for the calculation of the Higgs branching ratios according to the effective Higgs Lagrangian.

