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Introduction

In absence of a direct observation of new particles, our ignorance of the EWSB
sector can be parametrized in terms of an effective Lagrangian

Bottom-up approach: the couplings of the operators are free parameters;
if new particles are discovered they can be included in the Lagrangian

The detailed form of the Lagrangian depends on which assumptions are made

Assumptions:

SU(2)L × U(1)Y is linearly realized at high energies

h(x) is a scalar and it is part of an SU(2)L doublet H(x)

h(x) is CP-even

flavour alignment to avoid FCNC
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Effective Higgs Lagrangian

The list of dim-6 operators of Effective
Lagrangian has been known since long
time:

A more recent complete and minimal
classification:

Here we will follow the parametrization
of:

Buchmüller and Wyler
NPB 268 (1986) 621

Grzadkowski, Iskrzynski, Misiak, Rosiek
JHEP 1010 (2010) 085

Giudice, Grojean, Pomarol, Rattazzi
JHEP 0706 (2007) 045

Power counting:

a factor 1/M for each extra derivative

a factor g∗/M ≡ 1/f for each extra power of H(x)
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Effective Higgs Lagrangian

L = LSM +
∑
i

c̄iOi ≡ LSM + ∆LSILH + ∆LF1
+ ∆LF2
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∂
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Effective Higgs Lagrangian
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=
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How many operators?

Effective Higgs Lagrangian:

12(∆LSILH) + 8 (∆LF1
) + 8 (∆LF2

) = 28

2 linear combinations of ∆LF1
are equivalent to pure oblique corrections

26 independent operators

Operators that do not affect Higgs physics:

5 bosonic operators

22 four-fermion baryon-number-conserving operators

27 independent operators

CP-odd operators:

∆LCP =
i c̃HW g

m2
W

(DµH)†σi (DνH)W̃ i
µν +

i c̃HB g′

m2
W

(DµH)†(DνH)B̃µν

+
c̃γ g′2

m2
W

H†HBµν B̃
µν +

c̃g g2
S

m2
W

H†HGa
µν G̃

aµν

+
c̃3W g3

m2
W

ε
ijkW i ν

µ W j ρ
ν W̃ k µ

ρ +
c̃3G g3

S

m2
W

f abcGa ν
µ Gb ρ

ν G̃ c µ
ρ ,

6 independent operators

26 + 27 + 6 = 59
independent,
6-dimensional
operators
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How many operators?

2 linear combinations of ∆LF1
are equivalent to pure oblique corrections:

OY
HΨ ≡

∑
ψ

Yψ OHψ ∼ OT ,OB and O′Hq + O′HL ∼ OW

By making use of the equations of motion

iDµW i
µν = g H†

σi

2

←→
D νH − ig ψ̄

σi

2
γνψ i∂µBµν =

g ′

2
H†
←→
D νH − ig ′ ψ̄Y γνψ

one can rewrite OW and OB as

OW = −2OH +
4

v2
(H†H)|DµH|2 + O′Hq + O′HL

OB = 2 tan2θW

(
−OT + OY

HΨ

)
and upon the field redefinition H → H − 2c̄W (H†H)H/v2, one gets

OW = −6OH + 2 (Ou + Od + Ol )− 8O6 + O′Hq + O′HL
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How many operators?

OW = −6 OH + 2 (Ou + Od + Ol )− 8 O6 + O′Hq + O′HL

OB = 2 tan2
θW

(
−OT + OY

HΨ

)

It is always possible to remove OW and OB

⇓

coefficients of other operators are shifted:
�� ��c̄i → c̄i + ∆c̄i

∆c̄H = −6 c̄W ∆c̄T = −2 tan2θW c̄B ∆c̄6 = −8 c̄W ∆c̄ψ = 2 c̄W

∆c̄ ′Hq = ∆c̄ ′HL = c̄W

6 ∆c̄Hq =
3

2
∆c̄Hu = −3 ∆c̄Hd = −2 ∆c̄HL = −∆c̄Hl = −2 tan2θW c̄B

∆c̄T 6= 0: breaking of the custodial symmetry (unobservable)

The contribution of OT to ∆ε1 is canceled by the vertex correction due to
fermionic operators
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Why this basis?

∆LSILH =
c̄H

2v2
∂
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−
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W
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)
(∂νBµν )
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(DµH)†σi (DνH)W i
µν +
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S

m2
W

H†HGa
µνG

aµν

one can describe the oblique corrections in terms of ∆LSILH operators instead of
operators with fermionic currents

it isolates the contribution to the decays h→ γγ (from Oγ) and h→ γZ (from
Oγ and OHW −OHB) that occur only at the radiative level in minimally coupled
theories

it is more appropriate to establish the nature of the Higgs boson and determine
the strength of its interactions



Naive Dimensional Analysis

a factor 1/M for each extra derivative

a factor g∗/M ≡ 1/f for each extra power of H(x)

estimates valid at the UV scale M

c̄H , c̄T , c̄6, c̄ψ ∼ O

(
v2

f 2

)
c̄W , c̄B ∼ O

(
m2

W

M2

)
c̄HW , c̄HB , c̄γ , c̄g ∼ O

(
m2

W

16π2f 2

)

c̄Hψ, c̄
′
Hψ ∼ O

(
λ2
ψ

g2
∗

v2

f 2

)
c̄Hud ∼ O

(
λuλd

g2
∗

v2

f 2

)
c̄ψW , c̄ψB , c̄ψG ∼ O

(
m2

W

16π2f 2

)

c̄W ,B , c̄Hψ , c̄ ′Hψ , c̄T : valid when generated at tree-level

c̄HW ,HB,g,γ : suppressed by an additional loop factor (g2
∗/16π2)

strong dynamics: g∗ � 1 ⇒ f � M

weak dynamics: g∗ ∼ g

leading New Physics effects: OH,T ,6,ψ (and fermionic operators if λψ ∼ g∗)
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Naive Dimensional Analysis

If the Higgs doublet is a composite Nambu–Goldstone boson
of a spontaneously-broken symmetry G → H:

c̄6 λ

v2

(
H†H

)3

c̄ψ

v2
yψ H†H ψ̄LHψR

c̄γ g′2

m2
W

H†HBµνB
µν

c̄g g2
S

m2
W

H†HGa
µνG

aµν

c̄ψB g′

m2
W

yψ ψ̄LHσ
µν
ψR Bµν

c̄ψW g

m2
W

yψ ψ̄Lσ
iHσµνψR W i

µν

c̄ψG gS

m2
W

yψ ψ̄LHσ
µν
λ
a
ψR Ga

µν

These operators violate the shift symmetry

H i → H i + ζ i

(part of the G/H transformation)

⇓

they cannot be generated
in absence of an explicit breaking

⇓

additional suppression factor
g2
6G
g2
∗

:

c̄γ , c̄g ∼ O

(
m2

W
16π2f 2

)
×

g2
6G
g2
∗



Bounds on flavour-preserving operators
95% of probability

−1.5× 10−3 < c̄T (mZ ) < 2.2× 10−3

−1.4× 10−3 < c̄W (mZ ) + c̄B(mZ ) < 1.9× 10−3

−0.02 < c̄Hq1 < 0.03 − 0.002 < c̄ ′Hq1 < 0.003

−0.003 < c̄Hq2 < 0.005 − 0.003 < c̄ ′Hq2 < 0.005

−0.008 < c̄Hu < 0.02 − 0.03 < c̄Hd < 0.02 − 0.03 < c̄Hs < 0.02

−0.0002 < c̄HL + c̄ ′HL < 0.003 − 0.002 < c̄HL − c̄ ′HL < 0.004

−0.005 < c̄Hq2
− c̄ ′Hq2

< 0.02 − 0.009 < c̄Hq3
+ c̄ ′Hq3

< 0.003

−0.02 < c̄Hc < 0.03 − 0.07 < c̄Hb < −0.005 − 0.0007 < c̄Hl < 0.003

−0.4× 10−3 < c̄Htb(mW ) < 1.3× 10−3



Bounds on flavour-preserving operators
95% of probability

−7.01× 10−6 < Im(c̄uB + c̄uW ) < 7.86× 10−6

−1.62× 10−6 < Im(c̄uG ) < 2.01× 10−6

−9.42× 10−7 < Im(c̄dB − c̄dW ) < 8.40× 10−7

−7.71× 10−7 < Im(c̄dG ) < 5.70× 10−7

−1.39× 10−4 < Im(c̄tG ) < 1.21× 10−4

−0.057 < Re(c̄tW + c̄tB)− 2.65 Im(c̄tW + c̄tB) < 0.20

−6.12× 10−3 < Re(c̄tG ) < 1.94× 10−3

−1.2 < Re(c̄bW ) < 1.1 , −0.01 < Re(c̄tW ) < 0.02



eHDECAY

http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/

It has been obtained from extending HDECAY 5.10

It allows for the calculation of the partial decay widths and branching
ratios of the Higgs boson according to the effective Higgs Lagrangian

QCD and EW higher order contributions are consistently included

The non-linear extension of the effective Lagrangian is included, as well
as the specific models MCHM4 and MCHM5.

http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/


Conclusions

We have reviewed the construction of the effective Lagrangian for a light Higgs
doublet.

By means of a naive power counting we have estimated the coefficients of the
various operators.

This analysis allows one to identify which operators can probe the Higgs
coupling strength to the new states and which instead are sensitive only to the
mass scale M.

It also gives the possibility to distinguish between weakly- coupled UV
completions of the Standard Model (like SUSY) and theories where the EW
symmetry is broken by a strongly-interacting dynamics which forms the Higgs
boson as a bound state.

We have shown the most important bounds set on them by present
experimental results on electroweak (EW) and flavor observables.

We have presented the program eHDECAY, an extension of HDECAY which
allows for the calculation of the Higgs branching ratios according to the effective
Higgs Lagrangian.


