Measurement of properties of the Higgs-like boson in diboson channels on ATLAS

Lashkar Kashif University of Wisconsin-Madison

On behalf of the ATLAS Collaboration

Large Hadron Collider Physics, Barcelona, Spain May 13, 2013

Outline

- Motivation & overview
- Measurement of resonance mass

$$-H \rightarrow \gamma \gamma, H \rightarrow ZZ \rightarrow 4l$$

- combination
- Measurement of signal strength

$$-H \rightarrow \gamma \gamma, H \rightarrow ZZ \rightarrow 4l, H \rightarrow WW \rightarrow lvlv$$

- signal strengths in different production modes
- o For coupling combinations, see G. Facini's talk in *Higgs 2* parallel session
- Spin/CP (J^P) discrimination

$$-H \rightarrow \gamma \gamma, H \rightarrow ZZ \rightarrow 4l, H \rightarrow WW \rightarrow lvlv$$

- combination
- Summary & outlook

Motivation & overview

- We have found a new boson in the search for the SM Higgs
- So far confirmed it in the 3 bosonic decay channels: $\gamma\gamma$, ZZ and WW
- We can already start measuring its properties in these channels
 - mass, couplings, signal strengths in various production modes: measure and compare to expectations from SM
 - J^P quantum numbers: compare expected kinematics of $J^P = 0^+$ signal with those of non-SM hypotheses
- The LHC has given us enough data during 2011-12 to start making fairly strong statements
 - 4.6-4.8 fb⁻¹ at 7 TeV, 20.7 fb⁻¹ at 8 TeV

Measurement of resonance mass

Mass from high-resolution channels

- Use mass m_H as the parameter of interest in likelihood, fit to data
 - signal strength μ (= σ/σ_{SM}) is a free parameter
- Best-fit mass

$$H \rightarrow \gamma \gamma$$
: $m_H = 126.8 \pm 0.2 (\text{stat}) \pm 0.7 (\text{syst}) \text{ GeV}$
 $H \rightarrow ZZ \rightarrow 4l$: $m_H = 124.3^{+0.6}_{-0.5} (\text{stat})^{+0.5}_{-0.3} (\text{syst}) \text{ GeV}$

Mass: combination of $\gamma\gamma$, 4l channels

• From combined fit: $m_H = 125.5 \pm 0.2 \text{(stat)} \pm 0.5 \text{(syst)} \text{ GeV}$

ATLAS-CONF-2013-014

- Mass difference $\Delta m_H(\gamma\gamma 4l) = 2.3^{+0.6}_{-0.7}(\text{stat}) \pm 0.6(\text{syst}) \text{ GeV}$
- What is the probability that both channels see the same resonance? $prob(\Delta m_H=0) = 1.5\%$ (2.4 σ) using ensemble tests

Measurement of signal strengths

$H \rightarrow \gamma \gamma$

- Overall signal strength $\mu (= \sigma/\sigma_{SM})$ at 126.8 GeV: $1.65 \pm 0.24 (stat)_{-0.18}^{+0.25} (syst)$
- Compatibility with SM expectation: 2.3σ
- At combined mass of 125.5 GeV, μ : 1.6 \pm 0.3
- Signal strength is high in all production modes, although consistent with SM expectation in VBF and associated production modes
 - can imply presence of new particles in decay loop

$H \rightarrow ZZ \rightarrow 4l$

- Overall signal strength μ at 124.3 GeV: $1.7^{+0.5}_{-0.4}$
- At 125.5 GeV, μ : 1.5 \pm 0.4

Signal strength by production mode at $m_H = 124.3 \text{ GeV}$

Quantity	$\mu_{\text{ggF+ttH}} \times B/B_{SM}$	$\mu_{\mathrm{VBF+VH}} \times B/B_{SM}$	$\mu_{ m VBF+VH}/\mu_{ m ggF+ttH}$
Measured value	$1.8^{+0.8}_{-0.5}$	$1.2^{+3.8}_{-1.4}$	$0.7^{+2.4}_{-0.3}$

$H \rightarrow WW \rightarrow lvlv$

ATLAS-CONF-2013-030

- Overall signal strength μ at 125 GeV: 1.01 ± 0.31
- Excellent agreement with SM!

Signal strength by production mode at $m_H = 125.0 \text{ GeV}$

Quantity	$\mu_{ m ggF}$ x B/B_{SM}	$\mu_{ ext{VBF+VH}} \ge B/B_{SM}$
Measured value	0.82 <u>+</u> 0.24(stat) <u>+</u> 0.28(syst)	1.66 <u>+</u> 0.67(stat) <u>+</u> 0.42(syst)

Spin/CP discrimination

$H \rightarrow ZZ \rightarrow 4l$

ATLAS-CONF-2013-013

- 4 charged leptons → most sensitive channel for J^P discrimination
- 6 J^P hypotheses tested: 0+, 0-, 1+, 1-, 2+, 2-
- 2⁺ can produced via ggF or qq annihilation
 - agnostic to production model \rightarrow do analysis for 5 $gg/qq \rightarrow 2^+$ fractions in interval [0, 1]
- Boosted Decision Trees (BDTs) used to maximize sensitivity

- 0⁻ excluded at 97.8% CL
- All 2⁺ hypotheses excluded at >83% CL
- SM hypothesis favored in all cases

L Kashif

$H \rightarrow \gamma \gamma$ and $H \rightarrow WW \rightarrow lvlv$

ATLAS-CONF-2013-029

ATLAS-CONF-2013-031

- $J^P = 0^+ vs \ 2^+$ discrimination analysis
- Five 2⁺ production models tested, and data does not prefer any of them
- In both channels, data agree closely with SM signal hypothesis

γγ

f (%)	Spin	p-valu	es (%)	$1 - CL_S(2^+)$ (%)
$f_{q\bar{q}}$ (%)	hypothesis	expected	observed	$1 - CL_S(2)(\pi)$
0	0+	1.2	58.8	99.3
0	2+	0.5	0.3	99.3
25	0+	6.3	60.2	92.2
23	2+	5.3	3.1	92.2
50	0+	24.3	75.2	68
50	2+	23.4	7.9	00
75	0+	29.4	88.6	70
13	2+	28.0	3.4	70
100	0+	14.8	79.8	88
100	2+	13.5	2.5	00

H T		ATLAS Preliminary ● Data Spin 0
1)/L(I	20	$H \to WW^{(*)} \to ev\mu v/\mu vev$ Signal hypothesis $I = 1\sigma$
log(L(H ₀)/L(H ₁)	15	$\sqrt{s} = 8 \text{ TeV}, \int Ldt = 20.7 \text{ fb}^{-1}$ • $J_{H_1}^P = 0^+$ • $J_{H_1}^P = 2^+$
	10	
	5	
	0	
	() 25 50 75 100
		f _{q\bar{q}} (%)

$f_{qar{q}}$	1-CL _S (2_m^+)		
100%	0.99		
75%	0.99		
50%	0.98		
25%	0.97		

0%

0.95

Combination of $J^P = 0^+ vs 2^+$ analyses

ATLAS-CONF-2013-040

$f_{qar{q}}$	Spin-2 assumed exp. $p_0(J^P = 0^+)$	Spin-0 assumed exp. $p_0(J^P = 2^+)$	obs. $p_0(J^P = 0^+)$	obs. $p_0(J^P = 2^+)$	$\operatorname{CL}_{\operatorname{S}}(J^P = 2^+)$
100%	$3.4 \cdot 10^{-3}$	$9.4 \cdot 10^{-5}$	0.82	$0.4 \cdot 10^{-5}$	$0.2 \cdot 10^{-4}$
75%	$1.0 \cdot 10^{-2}$	$1.1 \cdot 10^{-3}$	0.82	$3.7 \cdot 10^{-5}$	$2.1 \cdot 10^{-4}$
50%	$1.5 \cdot 10^{-2}$	$3.5 \cdot 10^{-3}$	0.85	$9.1 \cdot 10^{-5}$	$6.0 \cdot 10^{-4}$
25%	$6.8 \cdot 10^{-3}$	$2.4 \cdot 10^{-3}$	0.81	$1.0 \cdot 10^{-4}$	$5.3 \cdot 10^{-4}$
0%	$1.6 \cdot 10^{-3}$	$6.1 \cdot 10^{-4}$	0.65	$1.4 \cdot 10^{-4}$	$4.0 \cdot 10^{-4}$

All 2⁺ models excluded at >99.9% CL

Data look very SM Higgs-like

Conclusion & outlook

- ➤ Measurement of properties of new boson in ATLAS using Run I dataset presented
 - current focus is on bosonic decay channels: $\gamma\gamma$, ZZ and WW
- \triangleright Mass from combination of $\gamma\gamma$, ZZ channels:
 - $125.5 \pm 0.2 \text{(stat)} \pm 0.5 \text{(syst)} \text{ GeV}$
 - error on mass already <1%, and systematically limited
- ➤ Overall signal strength in WW channel very SM-like; high in ZZ, but still statistically limited
- Signal strength in $\gamma\gamma$ channel is high, consistent w/SM expectation at 2.3 σ
- Spin/CP analyses done in all 3 channels
- $J^P = 2^+$ excluded at >99.9% CL, $J^P = 0^-$ and $1^{+/-}$ excluded at >94% CL
- ✓ This boson is looking very SM-like, but confirmation in fermionic channels crucial (D. Jamin's talk in this session)

Backup

Systematic uncertainties in $H \rightarrow ZZ \rightarrow 4l$

- > Mass measurement
- Decay modes involving electrons (4e, $2e2\mu$): electron energy scale uncertainty is main contributor
 - 0.4% (0.2%) on measured mass in 4e ($2e2\mu$)
- Decay modes involving muons $(4\mu, 2\mu 2e)$: muon momentum scale, resolution uncertainty are main contributors
 - 0.2% (0.1%) on measured mass in 4μ (2 μ 2e)
- > Signal strength measurement
- Decay modes involving electrons: electron ID and reco efficiency
 - at $m_{41} = 125$ GeV, impact is 9.4% in 4e, 8.7% in $2e2\mu$, 2.4% in $2\mu 2e$
- Decay modes involving muons: muon ID and reco efficiency
 - impact is 0.8% in 4e, 8.7% in $2e2\mu$, 2.4% in 2μ 2e

Systematic uncertainties in $H \rightarrow \gamma \gamma$

Table 5: Summary of the impact of systematic uncertainties on the signal yields for the analysis of 8 TeV data.

Systematic uncertainties	Value(%)			Constraint
Luminosity		±3.6		
Trigger		±0.5		
Photon Identification		±2.4		Log-normal
Isolation		±1.0		
Photon Energy Scale		±0.25		
Branching ratio	±5.9% – ±	$2.1\% \ (m_H = 11)$	0 - 150 GeV)	Asymmetric Log-normal
Scale	ggF: +7.2 -7.8 ZH: +1.6 -1.5	VBF: +0.2 ttH: +3.8 -9.3	WH: +0.2 -0.6	Asymmetric Log-normal
PDF+ α_s	ggF: +7.5 ZH: ±3.6	VBF: +2.6 ttH: ±7.8	WH: ±3.5	Asymmetric Log-normal
Theory cross section on ggF	Loose high-mass two-jet: ±		±48 ±28	Log-normal
	Low	-mass two-jet:	±30	

Systematic uncertainties in $H \rightarrow WW \rightarrow lvlv$

Table 13: Leading uncertainties on the signal strength μ for the combined 7 and 8 TeV analysis.

Category	Source	Uncertainty, up (%)	Uncertainty, down (%)
Statistical	Observed data	+21	-21
Theoretical	Signal yield $(\sigma \cdot \mathcal{B})$	+12	-9
Theoretical	WW normalisation	+12	-12
Experimental	Objects and DY estimation	+9	-8
Theoretical	Signal acceptance	+9	–7
Experimental	MC statistics	+7	–7
Experimental	W+ jets fake factor	+5	-5
Theoretical	Backgrounds, excluding WW	+5	-4
Luminosity	Integrated luminosity	+4	-4
Total		+32	-29

Probability of background-only hypothesis

Best-fit μvs mass

- Poor mass resolution in $H \rightarrow WW \rightarrow lvlv$
- Agreement with $\gamma\gamma$ and ZZ within 95% CL

$\mu_{ m ggF+ttH},\,\mu_{ m VBF+VH}$

-2 In A

• Combination yields $>3\sigma$ evidence for VBF production of resonance

-2 In A

Spin discrimination in $H \rightarrow \gamma \gamma$

 $\cos\theta^*$ distribution in data and from SM signal prediction, overlain on background

 $\cos\theta^*$ distribution in bkg-subtracted data. The two sets of points correspond to the subtraction of the different profiled bkg shapes in the case of the conditional 0^+ and 2^+ fits. The expected PDFs for the two cases are overlain. The cyan band shows the systematics on bkg modeling.

Spin discriminants in $H \rightarrow WW \rightarrow lvlv$

Bkg-subtracted BDT distributions in $H \rightarrow WW \rightarrow lvlv$

Spin toy distributions in $H \rightarrow WW \rightarrow lvlv$

Spin analyses: statistical treatment

- > Same statistical methodology used in individual channels and in combination
- O Likelihood defined with the fraction of $J^P = 0^+$ signal as the parameter of interest ε

$$\mathcal{L}(\epsilon, \boldsymbol{\theta}) = \prod_{i}^{N_{bins}} P(N_{i} | \epsilon \cdot S_{i}^{0^{+}}(\boldsymbol{\theta}) + (1 - \epsilon) S_{i}^{2_{m}^{+}}(\boldsymbol{\theta}) + B_{i}(\boldsymbol{\theta})) \times \prod_{j}^{N_{sys}} \mathcal{A}(\tilde{\theta}_{j} | \theta_{j})$$

- Since have no knowledge of $2^+_{\rm m}$ production cross-section, signal strength μ is a floating parameter in fit
- The test statistic q is defined as a ratio of likelihoods

$$q = \ln \frac{L(\varepsilon = 1, \vec{\theta}_{\varepsilon=1})}{L(\varepsilon = 0, \vec{\theta}_{\varepsilon=0})}$$

- o Distributions of test statistic obtained using toy MC
 - in toy generation, number of signal and bkg events in each channel is estimated from a fit to data, with all nuisance parameters profiled

Spin analyses: p-values and CL_s

For illustration

Spin-2 rejection test:

obtain expected p-value by integrating over tail of the blue (2^+) distribution to the right of the median of the red (0^+) distribution

obtain observed *p*-value by integrating over same tail, but this time to the right of the observed test statistic (black vertical line)

Spin-0 rejection test similar, with the direction of integration reversed

 To avoid spurious exclusion of a hypothesis owing to fluctuations in data, normalize p-value using a CL_s approach

$$CL_s(J^P = 2^+) = \frac{p_0(J^P = 2^+)}{1 - p_0(J^P = 0^+)}$$

The 2⁺ model

• The amplitude for the interaction of a general spin-2 particle with gauge bosons is:

$$\begin{split} &A(X \to VV) = \Lambda^{-1} \left[2g_{1}^{(2)}t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2g_{2}^{(2)}t_{\mu\nu} \frac{q_{\alpha}q_{\beta}}{\Lambda^{2}} f^{*1,\mu\alpha} f^{*2,\nu,\beta} \right. \\ &+ g_{3}^{(2)} \frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}} t_{\beta\nu} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) + g_{4}^{(2)} \frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}} t_{\mu\nu} f^{*1,\alpha\beta} f^{*(2)}_{\alpha\beta} \\ &+ m_{V}^{2} \left(2g_{5}^{(2)}t_{\mu\nu} \epsilon_{1}^{*\mu} \epsilon_{2}^{*\nu} + 2g_{6}^{(2)} \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} \left(\epsilon_{1}^{*\nu} \epsilon_{2}^{*\alpha} - \epsilon_{1}^{*\alpha} \epsilon_{2}^{*\nu} \right) + g_{7}^{(2)} \frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}} t_{\mu\nu} \epsilon_{1}^{*\epsilon} \epsilon_{2}^{*} \right) \\ &+ g_{8}^{(2)} \frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + g_{9}^{(2)} t_{\mu\alpha}\tilde{q}^{\alpha} \epsilon_{\mu\nu\rho\sigma} \epsilon_{1}^{*\nu} \epsilon_{2}^{*\rho} q^{\sigma} + \frac{g_{10}^{(2)} t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{2}} \epsilon_{\mu\nu\rho\sigma} q^{\rho}\tilde{q}^{\sigma} \left(\epsilon_{1}^{*\nu} \left(q \epsilon_{2}^{*} \right) + \epsilon_{2}^{*\nu} \left(q \epsilon_{1}^{*} \right) \right) \right] \end{split}$$

(Y. Gao et al., Phys. Rev. D 336 81 (2010) 075022, http://arxiv.org/pdf/1001.3396.pdf)

- At least 10 couplings → large number of possible models depending on which couplings are non-zero
- In our case, all 3 channels use a simplified scenario
 - for gg production of 2^+ , all couplings except g_1 are zero, with $g_1 = 1$
 - for bosonic decays, $g_1 = g_5 = 1$, all other couplings zero
 - for qq production, only $\rho_1 = 1$ in Eq. 10 in above reference

$H \rightarrow ZZ \rightarrow 4l$

ATLAS-CONF-2013-013

- 4 charged leptons \rightarrow most sensitive channel for J^P discrimination
- 6 J^P hypotheses tested: 0⁺, 0⁻, 1⁺, 1⁻, 2⁺, 2⁻
- 2⁺ can produced via ggF or qq annihilation
 - agnostic to production model \rightarrow do analysis for 5 $gg/qq \rightarrow 2^+$ fractions in interval [0, 1]
- Selected events in range $115 < m_{41} < 130$ GeV used
- Boosted Decision Trees (BDTs) trained to maximize sensitivity
 - Φ, θ_1 , θ_2 , m_{12} , m_{34} used to train BDT for 0^+ vs 0^- discrimination
 - for other hypotheses, Φ_1 and θ^* used in addition

$H \rightarrow ZZ \rightarrow 4l$ (cont'd)

		BDT analysis			
		tested J^P for		tested 0+ for	
		an assumed 0+		an assumed J^P	CL_S
expected observed		observed*			
0-	p_0	0.0037	0.015	0.31	0.022
1+	p_0	0.0016	0.001	0.55	0.002
1-	p_0	0.0038	0.051	0.15	0.060
2_{m}^{+}	p_0	0.092	0.079	0.53	0.168
2-	p_0	0.0053	0.25	0.034	0.258

- 0⁻ excluded at 97.8% CL
- All 2+ hypotheses excluded at >83% CL
- SM signal hypothesis is strongly favored in all cases

Spin: $H \rightarrow \gamma \gamma$

ATLAS-CONF-2013-029

- $J^P = 0^+ vs \ 2^+$ discrimination analysis
- Five 2⁺ production models tested, as in ZZ channel
- Two variables used to separate signal from bkg, and to test J^P hypotheses:
 - $\gamma\gamma$ invariant mass, $m_{\gamma\gamma}$
 - polar angle distribution of photons with respect to *z*-axis of Collins-Soper frame, $|\cos \theta^*|$
- Only 8 TeV data used
- 2+ hypothesis with 100% gg
 fraction rejected at >99% CL
- Data prefer SM signal hypothesis

C (01)	Spin	p-valu	les (%)	1 CI (2+) (01)
$f_{q\bar{q}}$ (%)	hypothesis	expected	observed	$1 - CL_S(2^+)$ (%)
0	0+	1.2	58.8	99.3
0	2+	0.5	0.3	99.5
25	0+	6.3	60.2	02.2
25	2+	5.3	3.1	92.2
50	0+	24.3	75.2	68
30	2+	23.4	7.9	00
75	0+	29.4	88.6	70
75	2+	28.0	3.4	70
100	0+	14.8	79.8	88
100	2+	13.5	2.5	00

Spin: $H \rightarrow WW \rightarrow lvlv$

ATLAS-CONF-2013-031

- $J^P = 0^+ vs \ 2^+$ discrimination analysis
- 2 BDTs trained
 - one BDT to separate 0⁺ signal from bkg, the other to separate 2⁺ signal from bkg
 - 2D BDT output fit to data
- Training variables: $\Delta \phi_{ll}$, m_{ll} , pT_{ll} , m_T $m_T = \sqrt{(E_T^{\ell\ell} + E_T^{miss})^2 |\mathbf{p}_T^{\ell\ell} + \mathbf{E}_T^{miss}|^2}$
- Different lepton flavor, 0-jet channel used
 - only 8 TeV data used at this point
- 2+ hypothesis rejected at 95% CL or better in all cases
- As in the other two channels, data prefer
 SM signal hypothesis

$f_{qar{q}}$	1-CL _S (2_m^+)
100%	0.99
75%	0.99
50%	0.98
25%	0.97
0%	0.95