Study of Higgs boson production in bosonic decay channels at CMS

Pasquale Musella (CERN) on behalf of the CMS Collaboration

LHCP 2013 First Large Hadron Collider Physics Conference April 13th 2013 – Barcelona, Spain

Higgs bosonic decays: directions

CMS

- Low mass:
 - Study of the properties of H(125). $H \rightarrow WW(2l2v),$ $H \rightarrow ZZ(4l),$ $H \rightarrow \gamma\gamma$
 - Rare processes eg. H \rightarrow Z γ , ttH \rightarrow tt $\gamma\gamma$
- High mass:
 - Search for additional states from ¹⁰ extended Higgs sector (and eventually the study of VV-scattering):

 $\begin{array}{l} H \rightarrow ZZ(4I,2I2\nu,2I2q), \\ H \rightarrow WW(2I2\nu,I\nu jj) \end{array}$

Higgs bosonic decays: references

Channel		approx. L(√s=7+8TeV) [fb⁻¹]	Ref	*Covered in		
$H \rightarrow WW(IvIv)^*$		5+19.5	HIG-13-003	this talk		
$WH \rightarrow WW$	/W(3l3v)	5+19.5	HIG-13-009			
$H \rightarrow WV$	V(lvj)*	0+19.5	HIG-13-008	New		
$H \rightarrow ZZ$	Z(4I)*	5+19.5	HIG-13-002			
H → ZZ(2l2v)*	5+19.5	HIG-13-014	New		
$H \rightarrow r$	γγ*	5+19.5	HIG-13-001			
ttH →	ttγγ*	0+19.5	HIG-13-015	New		
$H \rightarrow Z$	Z(II)γ	5+19.5	HIG-13-006			

(Only showing analyses that use the full 8TeV dataset. Full list at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG)

P. Musella (CERN) - Higgs to bosons in CMS

$H \rightarrow WW(|v|v)$

- Large $\sigma \times BR$.
- Clean signature:
 - $_{-}$ Two isolated high p_T leptons.
 - Missing transverse energy
- No mass resolution.
- Main backgrounds:
 - Non-resonant WW, tt.
- Discriminating variables:
 - $p_{T\parallel}, m_{\parallel}, m_{T}, \Delta \phi_{\parallel}$

Vectors from the decay of a scalar and V-A structure of W decay lead to a small opening angle between leptons (especially true for on-shell Ws)

CMS Experiment at LHC, CERN Data recorded: Thu Apr 19 09:14: Run/Event: 191721 / 76089774 Lumi section: 111 Orbit/Crossing: 28960009 / 815

CM

Analysis overview

- Analysis performed in exclusive jet multiplicity bins.
 - _ 0-1jet: 5+19fb⁻¹ (√s=7+8TeV)
 - _ (VBF signature: last update with 5+12fb⁻¹)
- Also split events in same and opposite flavor channels.

Signal extraction

- Same flavor: cut-and-count analysis.
- Opposit flavor: 2D fit of m_{μ} vs m_{τ} .

100

90

80

70

60

50

40

30

20

60

70

M_{II} (GeV)

 Signal and background templates from MC corrected using control regions.

80

- Non resonant WW normalization freely floating.

Data

Results

Significance @ 125 GeV: 4.0 σ (5.1 expected)

CMS How because

- Golden channel: 4 isolated leptons.
 - Very high S/B ratio, excellent mass resolution (1-2%), fully reconstructed final state.
 - Low even yield. Demanding requirements in terms of efficiency down to p_T of 5-10GeV.

Matrix element analysis

CMS

P. Musella (CERN) - Higgs to bosons in CMS

CÉRN

- Events categorized according to jet multiplicities.
- Signal extracted 3D from simultaneous fit.
 - $_{-}$ 0-1jet: m₄₁ vs MELA vs p_{T41}
 - 2jets (20% ggH): m₄₁ vs MELA vs Fisher discriminant(m_{jj}, $\Delta \eta_{jj}$)

13/05/2013

P. Musella (CERN) - Higgs to bosons in CMS

Overview

- Search for a narrow peak on a smoothly falling background.
 - Excellent mass resolution (1-2%).
 (Energy resolution and vertex identification).
 - Rejection of reducible background also crucial.
 - _ Background estimated using m_{yy} side-bands.
 - Signal model using inputs from $Z \rightarrow ee$, $Z \rightarrow II\gamma$ and $Z \rightarrow \mu\mu$ control samples.

Overview (2)

Events categorized in terms of S/B and mass ×10³ MC 53 DiphotonJets + PhotonJets + DiJets / Data vs = 8 TeV L = 19.62 fb⁻¹ resolution. # of events/0.04 60 Prompt-Eake Two analyses: 50 rompt-Prompt ID Shape Systematics • MVA mass-factorized: BDT-based categorization 40 (using energy resolution, vertex ID probability, 30 photon kinematics other than m_m). 20 . Cut-based analysis: simple categorization according to photon rapidity and EM shower shape based conversion 10 tag. -0.5 0 0.5 1.0 Signal extracted from simultaneous fit to m. di-Photon BDT

Exclusive categories

- In addition to the untagged categories, high S/B categories are defined using additional objects in the event.
 - Di-jet: 2 categories (loose/tight) with increasing VBF purity (loose ~50%, tight ~80%). MVA analysis uses a dijet BDT-based selection.
 - Additional leptons (electrons and muons pT>20 GeV) or MET (>70 GeV) with increased VH content.
- Improve significantly the ability to measure Higgs couplings.
- Events assigned to categories in the following order:

Results

(Taking into account correlations, the results of the two analyses are statistically compatible at less than 2σ level).

CÈRN

Search for ttH with H $\rightarrow \gamma\gamma$

- Use cut-based photon identification.
- Require additional jets and leptons on top of di-photon selection.
 - $_{-}$ Expected and observed limits ~5 x SM.
 - See poster from Francesco Micheli.

Summary

m.,=125.0 GeV

(H→ZZ^(*)→4I m_u=125.8 GeV)

Best Fit $\sigma/\sigma_{SM}(\mu)$

- Bosonic final states are an excellent tool for Higgs Physics at the LHC.
- The properties of the newly discovered ~125GeV state compatible with CMS preliminary those of the SM Higgs boson $H \rightarrow \gamma \gamma$ cms hig-13-001 within (still sizeable) Vs = 7 TeV. L = 5.1 fb⁻¹ Vs = 8 TeV. L = 19.6 fb⁻¹ uncertainties. $H \rightarrow ZZ^{(*)} \rightarrow 4I$ CMS HIG-13-002
 - See talk from Andrea Benaglia for further details.
- Higher energy and luminosity -2 -3 will provide more precise information on the properties of the new state.
- Searches for additional Higgs like bosons at high mass will eventually start to probe VV-scattering.

Vs = 7 TeV. L = 5.1 fb⁻¹ vs = 8 TeV. L = 19.6 fb⁻¹

vs = 7 TeV. L = 4.9 fb⁻¹ vs = 8 TeV. L = 19.5 fb⁻¹

 $H \rightarrow WW^{(*)} \rightarrow 2I2v \text{ cms Hig-13-003}$

-1

0

Additional material

Mass measurement

$H \rightarrow ZZ \rightarrow 4\ell$:

Mass estimation with m4l, KD and s(m4l) Very small systematics due the very good Control of the leptons scale and resolution: $mH = 125.8 \pm 0.5$ (stat.) ± 0.2 (syst.) GeV.

 $H \rightarrow \gamma \gamma$: Systematics on the extrapolation from Z→ee to H→γγ (0.25% e → γ, 0.4% m_z → m_H) $mH = 125.4 \pm 0.5$ (stat.) ±0.6 (syst.) GeV

mX = 125.7 \pm 0.3(stat) \pm 0.3(syst) GeV = 125.7 \pm 0.4 GeV

- Simple hypothesis test:
 - SM Higgs;
 - Minimal graviton-like spin 2 model "2⁺_m" produced in gluon fusion.
- Fit m₁ vs m₇ under the two hypotheses

2⁺ hypothesis disfavored at CLs = 14%

CMS Preliminary vs = 7 TeV, L = 4.9 fb⁻¹; vs = 8 TeV, L = 19.5 fb⁻¹

Dedicated Matrix Element discriminants (D^(h)) for each hypothesis test.

- Hypotesys test: 3D fit of m4I vs MELA vs D^(h).

Distribution of JP discriminants

P. Musella (CERN) - Higgs to bosons in CMS

Electron energy scale and resolution

P. Musella (CERN) - Higgs to bosons in CMS

Muon energy scale and resolution

- Very good ECAL performance in 2012
 - Z→ee mass resolution better than 1.2% for electrons with low bremsstrahlung in the barrel.
- Stable performance already using promptly reconstructed data.

$H \rightarrow WW$: background control

- **WW**:
 - mH<200 GeV: events with mll>100 GeV (from data). MC to extrapolate into signal region
 - mH>200 GeV: from MC.
- Ζ/γ* :
 - events with mll±7.5 GeV around Zmass. (residual bkg subtracted)
 - $_{-}$ extrapolation to signal region from MC. Cross-checked with data.
- Wy* :
 - _ MC (Madgraph) for shape
 - Normalization from high purity control sample (data).
- WZ/ZZ/ Wy:
 - _ from MC.
 - $_{-}$ Wy estimate cross-checked

 $H \rightarrow WW$: background control (2)

34

CMS

> W+jets/QCD:

CÈRN

- Control sample with "tight+fail" sample.
- Extrapolation to signal region with mis-identified probability
- Validation on same-sign/DF control sample

> Top (tt/tW):

- Control sample with inverted top veto
- Background surviving the veto estimated by weighting events with per-event tagging efficiency per-jet tagging efficiency measured in separated control sample.
- Validation in 1-jet DF top-enriched sample (inverting b-tag requirement)

- Exclusion at 95% CL in the mass range 128 600 GeV.
- Large excess in the low mass makes the limits weaker than expected.
- When including mH=125 GeV as a part of background, no significant excess is seen over the entire range.

$H \rightarrow WW$: signal strength

Low mass resolution gives a shallow likelihood prole as a function of mH

Consistent results among the exclusive categories & data taking periods

CÉRN

6% of event affected, 50% efficiency, 80% purity

80

13/05/2013

90 100 110 120 130 140 150 160 m_{4l+γ} [GeV]

37

43

\rightarrow ZZ: spectrum and tables

110 < m4l < 1000 GeV

Channel	4e	4μ	2e2µ
ZZ background	78.9 ± 10.9	118.9 ± 15.5	192.8 ± 24.8
Z+X	$6.5^{+2.6}_{-2.6}$	$3.8^{+1.5}_{-1.5}$	$9.9^{+4.0}_{-4.0}$
All background expected	85.5+11.2	$122.6^{+15.5}_{-15.5}$	202.7+25.2
$m_H = 125 \text{ GeV}$	3.5 ± 0.5	6.8 ± 0.8	8.9 ± 1.0
$m_H = 126 \text{ GeV}$	3.9 ± 0.6	7.4 ± 0.9	9.8 ± 1.1
Observed	86	125	240

110 < m4l < 160 GeV

Channel	4e	4μ	2e2µ	4ℓ
ZZ background	6.6 ± 0.8	13.8 ± 1.0	18.1 ± 1.3	38.5 ± 1.8
Z+X	2.5 ± 1.0	1.6 ± 0.6	4.0 ± 1.6	8.1 ±2.0
All background expected	9.1±1.3	15.4 ± 1.2	22.0 ± 2.0	46.5 ±2.7
$m_H = 125 \text{ GeV}$	3.5 ± 0.5	6.8 ±0.8	8.9 ±1.0	19.2 ±1.4
$m_H = 126 \text{ GeV}$	3.9 ± 0.6	7.4 ± 0.9	9.8 ±1.1	21.1 ± 1.5
Observed	16	23	32	71

CÉRN

$H \rightarrow ZZ m_{Z1} vs m_{Z2}$

CÈRN

- Energy scale and resolution validated and corrected using Z → ee.
 - Excellent stability of energy resolution across the whole 8TeV dataset.
 - Good modelling of mass shape in analysis categories.

P. Musella (CERN) - Higgs to bosons in CMS

- Higgs production vertex is selected using a Boosted Decision Tree (BDT)
 _ Inputs: Σp₁² of vertex tracks, vertex recoil wrt diphoton system, pointing from converted photons.
- An additional BDT is used to estimate the vertex probability in the MVA analysis.
- Control samples: $Z \rightarrow \mu\mu$ for unconverted photons, γ +jets for converted photons

- CMS
- MVA classifier validated in data using $Z \rightarrow ee$ events.
 - Good agreement observed within uncertainties.

- Cut-based analysis uses:
 - cut-based photon identification
 - a different definition of event categories
- Photon identification data/MC efficiency scale factors computed from $Z \to ee$ and $Z \to \mu \mu \gamma.$

Cat 0	Dath photons in hormal	\mathbf{P} oth shotons $\mathbf{P} > 0.04$		R	9=	E3:	×3/	Esc		
	Both photons in barrel	Both photons $K_9 > 0.94$	R9		H	+	F	Ħ	\blacksquare	-
Cat 1	Both photons in barrel	At least one photon with $R_9 < 0.94$	1.0		H	Ŧ	Ħ	Ħ	\mp	
Cat 2	At least one photon in endcaps	Both photons $R_9 > 0.94$						Ħ		
Cat 3	At least one photon in endcaps	At least one photon with $R_9 < 0.94$								

$H \rightarrow \gamma \gamma$: weighted mass spectra

MVA mass-factorized

Cut-based

CMS

CÉRN

Despite the same names, the untagged categories in MVA and Cut-basd are not equivalent 24

P. Musella (CERN) - Higgs to bosons in CMS

- Low signal to background ratio a fundamental feature of this channel.
 - _ Uncertainty on signal strength driven by statistical fluctuations of the background.
- Analysis changes can lead to statistical changes due to fluctuations in selected events the reconstructed $m_{_{\rm YV}}$.
- The correlation coefficient between the MVA and cut-based signal strength measurements is found to be r=0.76.

	Signal strength compatibility (including correlation)
MVA vs CiC 7+8 TeV	1.5 σ
MVA vs CiC 8 TeV only	1.8 σ
Updated MVA vs published (5.3/fb 8TeV)	1.6 σ
Updated CiC vs published (5.3/fb 8TeV)	0.5 σ

 $\hfill \ \hfill \ \$

Jackknife resampling

- CMS
- Jackknife resampling can be used to estimate the variance of stat. estimators in a non parametric way.
 - Achieved evaluating the estimator on subsets of the stat. sample.

 Given analyses A and B, used to estimate the variance of of m_A-m_B applying the jackknife resampling to the events selected by

either analysis.

76

$\rightarrow \gamma \gamma$: MVA categories

Expected signal and estimated background											
Event classes		SM Higgs boson expected signal ($m_{\rm H}$ =125 GeV)							Background		
		Total	ggH	VBF	VH	ttH	$\sigma_{ m eff}$ (GeV)	FWHM/2.35 (GeV)	$m_{\gamma\gamma} = 1$ (ev./0	l25 GeV GeV)	
-1	Untagged 0	3.2	61.4%	16.8%	18.7%	3.1%	1.21	1.14	3.3	± 0.4	
1 fb	Untagged 1	16.3	87.6%	6.2%	5.6%	0.5%	1.26	1.08	37.5	± 1.3	
5.	Untagged 2	21.5	91.3%	4.4%	3.9%	0.3%	1.59	1.32	74.8	±1.9	
7 TeV	Untagged 3	32.8	91.3%	4.4%	4.1%	0.2%	2.47	2.07	193.6	± 3.0	
	Dijet tag	2.9	26.8%	72.5%	0.6%	1 -	1.73	1.37	1.7	± 0.2	
8 TeV 19.6 fb ⁻¹	Untagged 0	17.6	72.9%	11.6%	13.0%	2.6%	1.38	1.31	21.9	± 0.5	
	Untagged 1	39.4	83.5%	8.4%	7.1%	1.0%	1.51	1.38	93.0	± 1.0	
	Untagged 2	155.3	91.7%	4.4%	3.5%	0.4%	1.78	1.52	559.6	± 2.5	
	Untagged 3	162.1	92.5%	3.9%	3.3%	0.2%	2.63	2.18	1021.3	± 3.4	
	Dijet tight	9.3	20.7%	78.9%	0.3%	0.1%	1.81	1.43	3.3	± 0.2	
	Dijet loose	11.6	46.8%	51.1%	1.7%	0.5%	1.87	1.60	12.0	± 0.4	
	Muon tag	1.4	0.0%	0.2%	79.1%	20.8%	1.87	1.55	0.7	± 0.1	
	Electron tag	1.0	1.1%	0.4%	78.9%	19.7%	1.91	1.55	0.6	± 0.1	
	$E_{\mathrm{T}}^{\mathrm{miss}}$ tag	1.6	21.1%	2.5%	64.5%	11.8%	1.81	1.66	1.7	± 0.1	

