Quarkonium polarization in pp collisions at \sqrt{s} = 7 TeV with the CMS experiment

Carlos Lourenço (CERN)

on behalf of the CMS collaboration

LHCP, Barcelona, May 2013

Quarkonium polarization: testing non-perturbative QCD

- Quarkonium production allows us to study hadron formation; important to understand 99% of the visible mass in the Universe
- The Standard Model for hadron formation is (non-perturbative) QCD; NRQCD = effective theory devoted to high- p_{T} quarkonium production

- ullet Υ polarization measurements: probe NRQCD for heavy quarkonia and high $p_{
 m T}$
- J/ ψ and $\psi(2S)$ measurements: probe NRQCD at very high $p_{\rm T}/m$ ratios
- $\psi(2S)$: the only S-wave quarkonium not affected by feed-downs from P states

- This talk presents the polarizations of the $\Upsilon(nS)$ and $\psi(2S)$ states, measured by CMS in pp collisions at \sqrt{s} = 7 TeV
- The $\psi(2S)$ results are new

Quarkonium polarization: variables and frames

$$\lambda_{\theta} = +1$$
 $\lambda_{\varphi} = \lambda_{\theta \varphi} = 0$
 $\lambda_{\theta} = +1$: "transverse" polarization
$$\lambda_{\theta} = -1$$
 $\lambda_{\varphi} = \lambda_{\theta \varphi} = 0$
 $\lambda_{\theta} = -1$: "longitudinal" pol.

Quarkonium polarization: variables and frames

Helicity (HX): direction of quarkonium momentum Collins-Soper (CS): direction of relative velocity of colliding particles (p_1 , p_2) Perpendicular helicity (PX): perpendicular to CS

Importance of measuring the full angular distribution

- Most experiments only measured the polar anisotropy, λ_{ϑ} , and only in one frame; this is insufficient to characterize the polarization of a particle
- \bullet The full angular distribution (three λ parameters) must be provided; ideally in more than one frame
- The shape of the angular distribution is invariant by rotation and can be characterized by the frame-independent parameter $\tilde{\lambda}$

The $\Upsilon(nS)$ 7 TeV data; 2011; $L_{\rm int} = 4.9 \, {\rm fb}^{-1}$

- $\Upsilon(nS)$ dimuon trigger: M = 8.5–11.5 GeV; $p_{\rm T}$ > 9 GeV; |y| < 1.25
- Analysis in 5 p_T bins (10–50 GeV) and 2 |y| bins: 0–0.6; 0.6–1.2
- Total signal yields: 222 k (1S); 82 k (2S); 51 k (3S)

The $\psi(2S)$ 7 TeV data; 2011; $L_{\rm int} = 4.9 \, {\rm fb}^{-1}$

- $\psi(2S)$ dimuon trigger: M = 3.35–4.05 GeV; $p_{\rm T}$ > 7 GeV
- Analysis in 4 $p_{\rm T}$ bins (14–50 GeV) and 2 |y| bins: 0–0.6; 0.6–1.2
- Total signal yields: 262 k (prompt plus non-prompt)

The analysis framework

- We measure the Posterior Probability Distributions of the λ_{ϑ} , λ_{φ} , $\lambda_{\vartheta\varphi}$ and $\tilde{\lambda}$ polarization parameters in three frames (HX, CS, PX)
 - Events distributed as in the background model (built from the sidebands) are subtracted from the data sample (using a likelihood-ratio criterion)
 - 2 The PPD is determined from the remaining signal-like events
 - Results and uncertainties are obtained from 1D projections of the PPDs

Systematic uncertainties

- Systematic effects are studied on data and with pseudo-experiments
- Main sources: framework; background model; and (di)muon efficiencies
- These uncertainties are propagated to the PPD
- \bullet Total uncertainties are dominated by systematics at low $p_{\rm T}$ and statistics at high $p_{\rm T}$
- Very good agreement between the $\tilde{\lambda}$ parameters measured in the three frames: no indication for unaccounted systematic effects

$\Upsilon(nS)$ polarizations in the HX frame, |y| < 0.6

Comparison with NLO NRQCD: $\Upsilon(nS)$

- $\Upsilon(1S)$: large χ_b feed-down contribution, but the χ_b octet MEs are unconstrained (lack of data on χ_b yields and polarizations)
- $\Upsilon(3S)$: practically always produced directly and depends only on (constrained) $\Upsilon(nS)$ octet MEs \to the data-theory comparison is more stringent
- In fact, the $\Upsilon(3S)$ case is where the data and theory disagree the most. . .
- NLO NRQCD calculations by J.-X. Wang et al., arXiv:1305.0748 [hep-ph]

$\psi(2S)$ polarizations in the HX frame, |y| < 0.6 and 0.6 < |y| < 1.2

- The $\psi(2S)$ shows no signs of strong polarizations
- The $\psi(2S)$ is not affected by feed-down from heavier quarkonia \rightarrow easier comparison to theory. . .

Comparison with NLO NRQCD: $\psi(2S)$

- The CMS results disagree with existing NLO NRQCD theoretical calculations
- Calculations by Mathias Butenschoen and Bernd Kniehl; arXiv:1212.2037 [hep-ph]

Summary of the CMS measurements

- The $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ and $\psi(2S)$ polarizations were measured in pp collisions at $\sqrt{s}=7\,\text{TeV}$, with dimuon data collected by CMS, corresponding to an integrated luminosity of $4.9\,\text{fb}^{-1}$
- The three anisotropy parameters λ_{ϑ} , λ_{φ} , $\lambda_{\vartheta\varphi}$ and the frame-invariant $\tilde{\lambda}$ were measured in three frames: HX, CS and PX
- Results were obtained in several $p_{\rm T}$ bins and two rapidity ranges, covering the ranges $10 < p_{\rm T} < 50\,{\rm GeV}$ and |y| < 1.2
- No evidence of strong polarizations, transverse or longitudinal
- For more details on the concepts, analysis and results:
 CMS Coll., PRL 110, 081802 (2013)
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11023
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH13003
 P. Faccioli et al., Eur. Phys. J. C69 (2010) 657 and references therein
- We sincerely thank Bernd Kniehl and Jian-Xiong Wang for providing us with their NLO NRQCD calculations

Conclusion: NRQCD is far from explaining quarkonium hadroproduction

- The measured $\Upsilon(3S)$ and $\psi(2S)$ polarizations, at high p_T and high p_T/m , do not show strong transverse polarizations. contrary to predictions for directly produced S-wave quarkonia
- This observation might reveal that:
 - 1 the colour-octet transition LDMEs are incorrectly fitted
 - NRQCD is not a good approximation of QCD: are short- and long-distance processes factorizable? are the velocity scaling rules correct?
 - (non-perturbative) QCD is unable to describe quarkonium production
 - → physics beyond the standard model?

Outlook: a glimpse of coming attractions

- The J/ ψ polarization at 7 TeV is also being measured, up to $p_{\rm T}$ ~ 70 GeV
- The 2012 data (8 TeV, $L_{\rm int} \sim 20~{\rm fb}^{-1}$) will allow more precise measurements of the $\Upsilon(nS)$ and $\psi(nS)$ polarizations
- We will also attempt the very challenging measurement of the polarizations of the χ_c and χ_b states, using the radiative decays $\chi \to V + \gamma$, with the γ reconstructed from conversions to e^+e^-

Contributions to the $\psi(2S)$ prompt signal region

- Fractions of prompt (closed circles), continuum-background (open squares), and non-prompt (closed squares) $\psi(2S)$ events in the prompt-signal mass-lifetime region, as functions of $p_{\rm T}$, for |y|<0.6
- The prompt-signal region is defined as a 2D window of $\pm 3\sigma$ widths in dimuon mass and (pseudo-proper) lifetime, where the σ values are the respective resolutions, which depend on the dimuon $p_{\rm T}$ and |y| bins

$\Upsilon(nS)$ polarization in the HX frame, 0.6 < |y| < 1.2

$\Upsilon(nS)$ polarization in the CS frame, |y| < 0.6

$\Upsilon(nS)$ polarization in the CS frame, 0.6 < |y| < 1.2

$\Upsilon(nS)$ polarization in the PX frame, |y| < 0.6

$\Upsilon(nS)$ polarization in the PX frame, 0.6 < |y| < 1.2

$\tilde{\lambda}$ results

• Consistent frame-invariant parameters in the three reference frames

Single-muon and dimuon efficiencies

- Single-muon efficiencies carefully measured with a *Tag&Probe* method and corrected for on an event-by-event basis
- Muon-pair correlations induced (at high $p_{\rm T}$) by the dimuon trigger are negligible in the phase space of this analysis (from detailed MC studies, validated with data collected with single-muon triggers)

Definition of the PPD

$$\mathcal{P}(\vec{\lambda}) \propto \prod_{i} \frac{1}{\mathcal{N}(\vec{\lambda})} W(\cos \vartheta^{(i)}, \varphi^{(i)} | \vec{\lambda}) \epsilon(\vec{p}_1^{(i)}, \vec{p}_2^{(i)})$$

 \mathcal{N} : normalization

W: general angular distribution

 ϵ : dimuon efficiency as a function of the muon momenta

Background subtraction algorithm

- Construct the background model interpolating from the mass sidebands (and non-prompt region)
- Using the model, define the likelihood \mathcal{L}_B for $(p_T,y,M,\cos\vartheta,\varphi)$ to represent a background event
- Using the entire data sample in the considered p_T, y, M bin, define the likelihood \mathcal{L}_{S+B} for $(p_T, y, M, \cos \vartheta, \varphi)$ to represent an event in our analysis sample, irrespectively of being signal or background
- Normalize \mathcal{L}_B to \mathcal{L}_{S+B} so that the ratio of the integrals is the background fraction f_{BG}
- Take one event from the data sample and calculate $R = \mathcal{L}_B(p_{\mathrm{T}}, y, M, \cos \vartheta, \varphi) / \mathcal{L}_{S+B}(p_{\mathrm{T}}, y, M, \cos \vartheta, \varphi)$
- Generate a uniform deviate $r \in [0,1]$
- Classify the event as background if R > r
- An event classified as background is removed from the sample

Comparison with CDF and theory

- Measurements of CMS extend beyond the p_{T} and |y| ranges probed by CDF
- \bullet CMS has smaller uncertainties at high $p_{\rm T},$ where the theory is more reliable
- Both measurements do not show strong polarizations