Search for Heavy Resonances in Leptonic Final States in CMS

John Stupak III on behalf of CMS LHCP 2013 May 17, 2013

Outline

- Introduction
- $-W_R \rightarrow \ell\ell jj [CMS-PAS-EXO-12-017]$
- $-W' \rightarrow \ell \nu \text{ [CMS-PAS-EXO-12-060] New!}$
- $Z' \rightarrow \ell^+\ell^-$ [CMS-PAS-EXO-12-061] New!
- LQ₂LQ₂ → $\mu\nu jj$ / $\mu\mu jj$ [CMS-PAS-EXO-12-042] Brand

Conclusion

Introduction

- A common approach to explain BSM physics is to extend the SM symmetry group
 - SU(3)_C×SU(2)_I ×U(1)_Y×U(1)′ → Additional neutral gauge boson (Z′)
 - SU(3)_C×SU(2)_I×U(1)_Y×SU(2)′ → Additional charged (W′) and neutral (Z′) gauge bosons
 - $SU(2)' = SU(2)_{p}$
 - Left-Right Symmetric Model with W' = W_R and right-handed neutrinos N_ℓ
- Another approach is to embed SM within a larger symmetry group
 - GUTs E₆, SU(6), SO(10), ...
 - Additional charged (W') and neutral (Z') gauge bosons
 - Leptons and quarks together within a multiplet → Leptoquarks
 - Color triplets bosons carrying both lepton and baryon number
- Additional gauge bosons and/or leptoquarks also predicted by:
 - Models with extra dimensions
 Little Higgs models
 - Composite models
 - RPV SUSY

- Technicolor

Introduction

- Leptonic ($\ell = e, \mu$) final states are promising topologies for NP searches
 - Triggering
 - TriggeringBackground rejection

- Large BR in many scenarios
- Searches shown here based on data collected by CMS in 2012
 - $s^{1/2} = 8 \text{ TeV}$
 - $\int Ldt \approx 20 \text{ fb}^{-1}$ (except W_R search based on 3.6 fb⁻¹)
 - Single or di-lepton triggers

$W_R \rightarrow \ell \ell j j$

- Left-Right Symmetric model predicts existence of additional charged gauge bosons (W_R) and heavy right-handed neutrinos (N_e)
 - W_R could decay according to:

$$W_R \to \ell N_\ell \to \ell \ell W_R^* \to \ell \ell q q'$$

- Search for resonances in m(\(\ell\ell\ell\)jj)
- Event selection
 - ≥ 2 isolated SF leptons
 - Leading (sub-leading) lepton p_T > 60 (40) GeV

 - m(ℓℓ) > 200 GeV
 - m(ℓℓjj) > 600 GeV

$W_R \rightarrow \ell \ell j j$

Background modeling

- Z+jets
 - Shape from MadGraph
 - Normalization from data in m(Z) window
- ttbar
 - Shape and normalization from eµjj events in data

- QCD
 - Data-driven "fake-rate" method
- Other backgrounds
 - Modeled with MC

Pythia m(W_R) = 1.8 TeV m(N_ℓ) = 0.9 TeV

Electron Channel

Selection Stage	Data	Signal	Total Bkgd	tŧ	Z+jets	QCD	Other
Two electron, two jets	8807	61	8943	968	7821	8	146
$e_1 p_{\rm T} > 60 {\rm GeV}$	6054	61	5905	767	5014	3	121
$M_{ee} > 200 \text{ GeV}$	310	59	296	199	75	3	20
$M_{eejj} > 600 \text{ GeV}$	144	59 ± 12	135 ± 30	83 ± 18	43 ± 23	2 ± 1	9 ± 3

Muon Channel

Selection Stage	Data	Signal	Total Bkgd	tī	Z+jets	OCD	Other
Two muons, two jets	10333	75	10016	968	8830	3	215
$\mu_1 p_T > 60 \text{ GeV}$	7058	75	6873	767	5933	2	171
$M_{\mu\mu} > 200 \text{ GeV}$	352	72	294	199	71	0.7	23
$M_{uuii} > 600 \text{ GeV}$	144	72 ± 13	130 ± 24	83 ± 17	35 ± 17	0.7 ± 0.4	$\overline{11\pm4}$

W_R → ℓℓjj Results

Data is consistent with background expectation

W_R → ℓℓjj Limits

Combined cross section exclusion for: $m(N_{\ell}) = 0.5 * m(W_{R})$

Exclusion in $m(N_{\ell})$ vs $m(W_{R})$ plane

Assuming degenerate N_e , N_u , N_τ

$\mathbf{W}' \rightarrow \ell \mathbf{v}$

- Search for Jacobian peak in SM m_⊤ tail
- Event selection

$$m_T = \sqrt{2 \cdot p_T^{\ell} \cdot E_T^{miss} \cdot (1 - \cos \Delta \phi_{\ell, \nu})}$$

- 1 isolated lepton
 - Electron (muon) p_⊤ > 100 (45) GeV
- $0.4 < p_T(\ell)/MET < 1.5$
- $\Delta \phi(\ell, MET) > 0.8\pi$
- Background modeling
 - W+jets
 - Pythia
 - NLO K-factor(m_⊤)
 - Normalized to σ_{NNI Ω}

- Other backgrounds
 - Modeled with MC

Final background expectation obtained from fit to MC:

$$f(m_T) = \frac{a}{(m_T^3 + bm_T + c)^d}$$

W' → ℓv Results

W' → ℓv Limits

S S

SSM = Sequential Standard Model SSMO = constructive interference w/ SM SSMS = destructive interference w/ SM W_{KK} = KK excitations of W in split-UED HNC = Helicity Non-Conserving CI model

Model	Channel	Observed limit	Expected limit
SSM	e	$m_{W'} < 3.20 TeV$	$m_{W'} < 3.25 TeV$
SSM	μ	$m_{W'} < 3.15 TeV$	$m_{W^{\prime}} < 3.10 TeV$
SSM	combined	$m_{W'} < 3.35 TeV$	$m_{W^\prime} < 3.40 \text{TeV}$
SSMO	e	$m_{W'} < 3.60 TeV$	$m_{W'} < 3.60 TeV$
SSMO	μ	$m_{W'} < 3.05 TeV$	$m_{W^{\prime}} < 3.30 TeV$
SSMO	combined	$m_{W'} < 3.60 TeV$	$m_{W^{\prime}} < 3.60 \text{TeV}$
SSMS	e	$m_{W'} < 3.00 TeV$	$m_{W^{\prime}} < 3.10 TeV$
SSMS	μ	$m_{W'} < 2.80 TeV$	$m_{W^\prime} < 2.90 TeV$
SSMS	combined	$m_{W'} < 3.10 TeV$	$m_{W^\prime} < 3.20 \text{TeV}$
W_{KK}^2	μ =0.05 TeV, combined	$m_{W_{KK}^2} < 1.7 \text{TeV}$	$m_{W_{KK}^2} < 1.7 \text{TeV}$
W_{KK}^2	μ =10.0 TeV, combined	$m_{W_{KK}^2} < 3.7 \text{TeV}$	$m_{W_{KK}^2} < 3.6 \text{TeV}$
HNC CI	e	$\Lambda < 13.0 \mathrm{TeV}$	$\Lambda < 13.3 \text{ TeV}$
HNC CI	μ	$\Lambda < 10.9 \mathrm{TeV}$	$\Lambda < 12.2 \text{ TeV}$

$Z' \rightarrow \ell^+\ell^-$

- Search for resonance in SM m($\ell^+\ell^-$) tail
- Event selection
 - 2 SF isolated leptons
 - Electron (muon) p_T > 35 (40) GeV
 - Muons are required to have OS, originate from common vertex
 - Cosmic / beam halo veto
- Signal Modeling
 - Pythia
 - Mass-dependent NNLO k-factors
- Background modeling
 - Z+jets
 - Powhea
 - Normalized to σ_{NNI Ω}
 - Total background normalized to data in Z mass window

Final background expectation obtained from fit: $m^{\kappa}e^{\alpha m+\beta m^2}$

- QCD
 - Data-driven "fake-rate" method
- Other backgrounds
 - Modeled with MC

Separate barrel-barrel and barrel-endcap events (electron channel)

$Z' \rightarrow \ell^+\ell^-$ Results

		Dielectro	Dimuon	sample		
	barrel-l	barrel-barrel barrel-endcap				
M_{ll} Range (GeV)	120–200	> 200	120–200	> 200	120–200	> 200
Data	41953	8947	28523	7995	78100	20000
Total Bkg.	42700 ± 1900	8900 ± 400	28600 ± 1400	7800 ± 400	78400 ± 3500	20100 ± 800
Z/γ^*	37800 ± 1900	7000 ± 400	25200 ± 1300	5600 ± 300	72200 ± 3500	16300 ± 800
$t\bar{t}$ + others	4300 ± 300	1700 ± 100	2100 ± 100	1500 ± 100	6200 ± 300	3800 ± 200
jets	500 ± 200	120 ± 50	1300 ± 500	700 ± 300	60 ± 10	30 ± 5

Data is consistent with background expectation

$Z' \rightarrow \ell^+\ell^-$ Limits

Channal	Observed m(Z') Limit [TeV]				
Channel	SSM	GUT			
Electron channel (barrel-barrel)	2.65	2.31			
Electron channel (barrel-endcap)	2.18	1.90			
Muon channel	2.77	2.43			
Combination	2.96	2.60			

$LQ_2LQ_2 \rightarrow \mu \nu jj / \mu \mu jj$

Search for pair production of scalar 2nd generation leptoquarks

Event pre-selection

- ≥ 2 jets
 - Leading (2nd leading) jet p_T > 125 (45) GeV
- S_T > 300 GeV

$$\begin{split} S_T^{\mu\mu jj} &= p_T(j_1) + p_T(j_2) + p_T(\mu_1) + p_T(\mu_2) \\ S_T^{\mu\nu jj} &= p_T(j_1) + p_T(j_2) + p_T(\mu_1) + MET \end{split}$$

- 1 isolated muon (p_T > 45 GeV)
- 0 electrons
- MET > 55 GeV
 - $\Delta \phi$ (MET,jet₁) > 0.5
 - $\Delta φ(MET, μ) > 0.8$
- m_⊤(MET,µ) > 50 GeV

µµjj channel

- ≥ 2 isolated muons (p_T > 45 GeV)
- m(μμ) > 50 GeV

$$m_T = \sqrt{2 \cdot p_T^{\mu} \cdot E_T^{miss} \cdot (1 - \cos \Delta \phi_{\mu,\nu})}$$

16

Q₂ → µvjj / µµjj

- Event selection
 - Mass-dependent optimization
 - µvjj channel
 - S_T, m(j, μ), m_T(MET,μ)
 - µµjj channel
 - S_T , $m_{min}(j,\mu_i)$, $m(\mu_1, \mu_2)$

M_{LQ} (GeV)	300	350	400	450	500	550	600	650	700	750	800	850	900	950	≥1000
$S_{\rm T} > ({\rm GeV})$	455	540	625	715	800	890	980	1070	1160	1250	1345	1435	1530	1625	1720
$M_{\mu\nu}^{\rm T} > ({ m GeV})$	155	180	205	225	245	260	275	290	300	310	315	320	320	325	320
$M(\mu, \text{jet}) > (\text{GeV})$	125	150	175	200	225	250	280	305	330	355	380	410	435	465	490
M_{LQ} (GeV)	30	00 35	50 40	0 45	50 50	00 55	50 60	00 650	700	750	800	850	900	950	≥1000

M_{LQ} (GeV)	300	350	400	450	500	550	600	650	700	750	800	850	900	950	≥1000
$S_{\rm T} > ({\rm GeV})$	380	460	540	615	685	755	820	880	935	990	1040	1090	1135	1175	1210
$M_{\mu\mu} > (\text{GeV})$	100	115	125	140	150	165	175	185	195	205	215	220	230	235	245
$M_{min}(\mu, \text{jet}) > (\text{Ge})$	V) 115	115	120	135	155	180	210	250	295	345	400	465	535	610	690

- Background modeling
 - µvjj channel
 - W+jets and ttbar
 - Shape from MadGraph
 - Simultaneously normalized with preselected data in W transverse mass window
 - µµjj channel
 - Z+jets
 - Shape from Madgraph
 - Normalization from preselected data in Z mass window
 - ttbar
 - Shape and normalization from from eµ data

LQ₂LQ₂ → μνjj / μμjj Results

19.6 fb⁻¹

CMS µvjj (Obs.)

CMS μνjj (Exp.)

CMS μμjj (Obs.) CMS μμjj (Exp.)

ATLAS, 7 TeV, 1.03 fb CMS. 7 TeV. 5.0 fb

1200

M_{IO} (GeV)

₂ → μνjj / μμjj Limits

Most stringent in existence!

Conclusion

- CMS is pursuing broad program of BSM searches
 - Sensitive to variety of NP scenarios
- No sign of BSM physics yet
 - Setting strong cross section and mass exclusions
 - In many cases, most stringent in existence
 - Strongly constrain NP scenarios

ı	Observed Limit [TeV]	
	SSM	3.55
W′	SSMO	3.6
	SSMS	3.1
W_{KK}^2	μ = 0.05 TeV	1.7
VV KK	μ = 10 TeV	3.7
HNC CI	е	13
пис сі	μ	10.9

Observed m(Z') Limit [TeV]						
SSM	GUT					
2.96	2.60					

Backup

As of Moriond

W_R → ℓℓjj Cross Section Limits

Electron channel

Muon channel

W_R → ℓℓjj Cross Section Limits

W_R → ℓℓjj Cross Section Limits

W_R -> lljj Mass Limits

W_R -> lljj Mass Limits

Muon channel – 2011 + 2012

W_R → ℓℓjj Event Display

W' → lv Signals

W' including SM interference

Helicity Non-Conserving model (contact interaction)

W' → ℓv Event Yield

	$M_{\mathrm{T}} > 1.0\mathrm{TeV}$	$M_{\mathrm{T}} > 1.5\mathrm{TeV}$	$M_{\mathrm{T}} > 2.0\mathrm{TeV}$						
Electron channel									
Data	22	1	1						
SM background	$26^{+2.6}_{-2.4}$	$1.99^{+0.27}_{-0.24}$	$0.218^{+0.037}_{-0.032}$						
W' , $M_{W'} = 2.5 \text{TeV}$	$51^{+1.2}_{-1.2}$	$39^{+0.96}_{-0.94}$	$24^{+0.74}_{-0.72}$						
$W', M_{W'} = 3 \text{ TeV}$	$10^{+0.25}_{-0.25}$	$8.03_{-0.2}^{+0.2}$	$5.91_{-0.16}^{+0.\overline{17}}$						
$CI \Lambda = 4 \text{ TeV}$	1205_{-26}^{+26}	398^{+13}_{-13}	$114^{+5.9}_{-5.6}$						
$CI \Lambda = 9 \text{ TeV}$	46^{+1}_{-1}	$15^{+0.52}_{-0.5}$	$4.45^{+0.23}_{-0.22}$						
	Muon cha	nnel							
Data	33	3	1						
SM background	$26^{+4}_{-3.5}$	$2.27^{+0.62}_{-0.49}$	$0.33^{+0.15}_{-0.1}$						
W' , $M_{W'} = 2.5 \text{TeV}$	$47^{+5.4}_{-4.8}$	$35^{+4.9}_{-4.3}$	$20^{+4.8}_{-3.8}$						
W' , $M_{W'} = 3 \text{ TeV}$	$9.9_{-1.3}^{+1.5}$	$7.4^{+1.3}_{-1.1}$	$5.15^{+1.2}_{-0.99}$						
$CI \Lambda = 4 \text{ TeV}$	1120^{+91}_{-84}	366^{+62}_{-53}	119^{+34}_{-26}						
$CI \Lambda = 9 \text{ TeV}$	$43^{+3.ar{5}^-}_{-3.3}$	$14^{+2.4}_{-2.1}$	$4.6^{+1.3}_{-1}$						

Electron and muon channels separately

Including Interference with SM

Constructive

Including Interference with SM – Electron and muon channels combined

Constructive

Destructive

Helicity Non-Conserving model (contact interaction)

W' → ℓv Split-UED Limits

W' → ℓv Event Display

Electron channel

W' → ℓv Event Display

Muon channel

$Z' \rightarrow \ell^+\ell^-$

event classification for limit setting

$Z' \rightarrow \ell^+\ell^-$

$Z' \rightarrow \ell^+\ell^-$ Event Display

electron channel

 $m_{ee} = 1.78 \text{ TeV}$

$Z' \rightarrow \ell^+\ell^-$ Event Display

muon channel

 $m_{\mu\mu} = 1.82 \text{ TeV}$

$LQ_2LQ_2 \rightarrow \mu\nu jj$

Selection cuts

M_{LQ} (GeV)	300	350	400	450	500	550	600	650	700	750	800	850	900	950	≥1000
$S_{\rm T} > ({\rm GeV})$	455	540	625	715	800	890	980	1070	1160	1250	1345	1435	1530	1625	1720
$M_{\mu\nu}^{\mathrm{T}} > (\mathrm{GeV})$	155	180	205	225	245	260	275	290	300	310	315	320	320	325	320
$M(\mu, \text{jet}) > (\text{GeV})$	125	150	175	200	225	250	280	305	330	355	380	410	435	465	490

Selected event yield

M_{LQ}	Signal	W+Jets	t t	VV, Z, Single Top	All BG	Data
300	5032 ± 69	990 ± 21	1741 ± 14	362 ± 11	$3093 \pm 27 \pm 383$	3276
350	2322 ± 28	418 ± 14	604.5 ± 8.1	201.8 ± 9.5	$1224 \pm 18 \pm 137$	1315
400	1032 ± 11	195.8 ± 9.1	243.6 ± 5.1	75.8 ± 4.1	$515 \pm 11 \pm 60$	594
450	512.8 ± 8.6	101.4 ± 6.6	110.4 ± 3.5	41.6 ± 2.9	$253.3 \pm 8.0 \pm 28$	289
500	257.6 ± 2.7	59.3 ± 5.0	53.9 ± 2.4	23.6 ± 2.1	$136.8 \pm 5.9 \pm 15$	158
550	139.2 ± 1.6	37.1 ± 3.9	24.5 ± 1.6	14.1 ± 1.7	$75.8 \pm 4.6 \pm 8.7$	87
600	75.77 ± 0.8	19.2 ± 2.7	13.7 ± 1.2	7.4 ± 1.1	$40.3 \pm 3.2 \pm 4.8$	53
650	43.18 ± 0.45	12.1 ± 2.2	7.48 ± 0.89	3.98 ± 0.71	$23.6 \pm 2.5 \pm 3.6$	32
700	24.51 ± 0.26	7.2 ± 1.7	4.82 ± 0.71	$2.37 ^{+0.77}_{-0.45}$	$14.4~^{+2.0}_{-1.9}\pm 2.6$	22
750	14.63 ± 0.15	5.3 ± 1.5	2.87 ± 0.55	$1.87 ^{+0.76}_{-0.42}$	$10^{+1.7}_{-1.6}\pm 2.3$	16
800	8.879 ± 0.097	3.8 ± 1.4	1.41 ± 0.39	$1.6 ^{+0.74}_{-0.4}$	$6.9^{+1.6}_{-1.5}\pm 1.9$	12
850	5.346 ± 0.056	0.92 ± 0.53	0.75 ± 0.28	$1.16^{+0.72}_{-0.36}$	$2.83^{+0.94}_{-0.7}\pm0.98$	6
900	3.265 ± 0.036	0.6 ± 0.43	0.63 ± 0.26	$0.86^{+0.7}_{-0.32}$	$2.09^{+0.86}_{-0.59}\pm0.92$	$\mid 4 \mid$
950	2.056 ± 0.022	0.39 ± 0.39	0.42 ± 0.21	$0.73^{+0.7}_{-0.3}$	$1.54^{+0.83}_{-0.54}\pm0.54$	4
1000	1.287 ± 0.014	0.39 ± 0.39	0.252 ± 0.145	$0.61 ^{+0.69}_{-0.28}$	$1.25^{+0.8}_{-0.5}\pm0.38$	$\mid 4 \mid$
1050	0.9091 ± 0.0091	0.39 ± 0.39	0.252 ± 0.145	$0.61 ^{+0.69}_{-0.28}$	$1.25^{+0.8}_{-0.5}\pm0.38$	$\mid 4 \mid$
1100	0.6274 ± 0.0061	0.39 ± 0.39	0.252 ± 0.145	$0.61^{+0.69}_{-0.28}$	$1.25^{+0.8}_{-0.5}\pm0.38$	4
1150	0.4292 ± 0.0043	0.39 ± 0.39	0.252 ± 0.145	$0.61 ^{+0.69}_{-0.28}$	$1.25^{+0.8}_{-0.5}\pm0.38$	4
1200	0.2989 ± 0.0027	0.39 ± 0.39	0.252 ± 0.145	$0.61 ^{+0.69}_{-0.28}$	$1.25^{+0.8}_{-0.5}\pm0.38$	4

$LQ_2LQ_2 \rightarrow \mu\mu jj$

Selection cuts

M_{LQ} (GeV)	300	350	400	450	500	550	600	650	700	750	800	850	900	950	≥1000
$S_{\rm T} > ({\rm GeV})$	380	460	540	615	685	755	820	880	935	990	1040	1090	1135	1175	1210
$M_{\mu\mu} > (\text{GeV})$	100	115	125	140	150	165	175	185	195	205	215	220	230	235	245
$M_{min}(\mu, \text{jet}) > (\text{GeV})$	115	115	120	135	155	180	210	250	295	345	400	465	535	610	690

Selected event yield

M_{LQ}	Signal	Z+Jets	tŧ	VV, W, Single Top	All BG	Data
300	14980 ± 110	716.2 ± 8.4	612 ± 18	86.7 ± 5.0	$1415 \pm 20 \pm 45$	1461
350	6975 ± 46	307.2 ± 5.5	368 ± 14	54.2 ± 4.1	$730 \pm 15 \pm 16$	714
400	3369 ± 22	176.5 ± 4.1	178.7 ± 9.4	29.6 ± 3.0	$384.8 \pm 10.7 \pm 9.3$	394
450	1664 ± 10	97 ± 3.0	89.3 ± 6.6	18.9 ± 2.4	$205.3 \pm 7.6 \pm 5.5$	210
500	859.4 ± 5.2	61.9 ± 2.4	48.5 ± 4.8	11.2 ± 1.9	$121.6 \pm 5.7 \pm 4.8$	128
550	459.3 ± 2.8	35.1 ± 1.8	25.5 ± 3.4	7.5 ± 1.6	$68.1 \pm 4.2 \pm 2.7$	75
600	252.3 ± 1.5	23 ± 1.4	15.84 ± 2.76	5.85 ± 1.41	$44.7 \pm 3.4 \pm 2.0$	44
650	143.87 ± 0.86	15.1 ± 1.13	8.86 ± 1.98	$4.08 {}^{+1.32}_{-1.25}$	$28\pm2.6\pm1.3$	24
700	82.02 ± 0.49	9.66 ± 0.91	5.97 ± 1.72	$2.99 ^{+1.12}_{-1.04}$	$18.6 \pm 2.2 \pm 1.3$	15
750	48.06 ± 0.29	6.37 ± 0.74	1.41 ± 0.7	$1.54 {}^{+0.78}_{-0.67}$	$9.32^{+1.29}_{-1.22}\pm0.87$	11
800	28.73 ± 0.17	3.85 ± 0.58	1.55 ± 0.77	$1.13^{+0.71}_{-0.59}$	$6.53 {}^{+1.2}_{-1.13} \pm 0.85$	9
850	17.43 ± 0.11	2.2 ± 0.42	0.56 ± 0.56	$1.12 ^{+0.72}_{-0.59}$	$3.88^{+1.0}_{-0.92} \pm 0.67$	5
900	10.337 ± 0.064	1.19 ± 0.31	$0.0 ^{+0.59}_{-0.0}$	$0.28^{+0.45}_{-0.2}$	$1.47 {}^{+0.81}_{-0.37} \pm 0.43$	3
950	6.333 ± 0.04	0.71 ± 0.24	$0.0{}^{-0.0}_{-0.0}$	$0.117 ^{+0.658}_{-0.117}$	$0.83^{+0.91}_{-0.26}\pm0.29$	1 1
1000	3.845 ± 0.025	0.38 ± 0.17	$0.0 ^{+0.59}_{-0.0}$	$0.0^{+0.65}_{-0.0}$	$0.383^{+0.894}_{-0.171}\pm0.031$	0
1050	2.557 ± 0.016	0.38 ± 0.17	$0.0 ^{+0.59}_{-0.0}$	$0.0 ^{+0.65}_{-0.0}$	$0.383^{+0.894}_{-0.171}\pm0.031$	0
1100	1.714 ± 0.01	0.38 ± 0.17	$0.0 ^{+0.59}_{-0.0}$	$0.0\ ^{+0.65}_{-0.0}$	$0.383^{~+0.894}_{~-0.171} \pm 0.031$	0
1150	1.1465 ± 0.0069	0.38 ± 0.17	$0.0^{+0.59}_{-0.0}$	$0.0 ^{-0.0}_{-0.0}_{-0.0}$	$0.383 {}^{-0.1894}_{-0.171} \pm 0.031$	0
1200	0.7554 ± 0.0045	0.38 ± 0.17	$0.0^{+0.59}_{-0.0}$	$0.0^{+0.65}_{-0.0}$	$0.383 {}^{-0.171}_{-0.171} \pm 0.031$	0

$LQ_2LQ_2 \rightarrow \mu\nu jj$

Pre-selected events

Selected events

m(LQ) = 500 GeV

LQ₂LQ₂ → µµjj

Pre-selected events

Selected Events

$$m(LQ) = 900 \text{ GeV}$$

LQ₂LQ₂ → µvjj Event Display

 $m(\mu,jet) = 1450 \text{ GeV}$

LQ₂LQ₂ → μμjj Event Display

 $m_{min}(\mu,jet) = 662 \text{ GeV}$