Search for Long-Lived Particles and Lepton-Jets with the ATLAS detector

LHCP 2013 - Barcelona

Daniela Salvatore

Università della Calabria - INFN

on behalf of the ATLAS Collaboration

- Different models predict the existence of long-lived particles
- Hidden Valley models have been proposed to explain several observed anomalies in cosmic-rays and dark matter detection experiments
 - final states with lepton-jets or displaced vertices

- Review of ATLAS public results, from the analysis of 2011 collision data at 7 TeV
 - 1. Prompt lepton-jets
 - 2. Prompt electron jets in association with a W boson
 - 3. Displaced muon-jets
 - 4. Displaced vertices

1. Prompt lepton-jets

- Models with SM + SUSY + dark sector
 - dark sector particles can mediate decays between SUSY and SM
 - the LSP (N_1) can decay into dark photons γ_d
 - $-\gamma_{d}$ decays into pairs of collimated leptons
- Parameters:
 - dark sector gauge coupling a_d (0.0, 0.1, 0.3) determines the amount of final leptons
 - dark photon mass m_{vd} (150, 300, 500 MeV)
- Final states:
 - pairs of electron jets (>= 2 e)
 - single muon jet (>= 4 μ)
 - pairs of muon jets (>= 2μ)

- Triggers:
 - electron-jet channel: single electron p_T > 20
 (22) GeV
 - single muon jet: single muon $p_{T} > 18 \text{ GeV}$
 - double muon jet: single muon $p_T > 18 \text{ GeV}$ OR 3 muons $p_T > 6 \text{ GeV}$

Physics Letters B 719, 299 (2013)

Prompt lepton-jets: selection criteria

- Electron-jet
 - at least one reconstructed electron with $p_{T} > 35 \text{ GeV}$
 - invariant mass < 2 GeV for the 2 highest-p_T tracks associated with each e-jet
 - 2 e-jet candidates per event

• Muon-jet

- composed of all muons in $\Delta R < 0.1$ around highest-p_T muon
- muon candidates reconstructed in MS and ID
- invariant mass < 2 GeV for the the 2 muons closest in $p_{_{T}}$
- background from multi-jet events
 - shower shape in the EM calorimeter and track quality cuts are applied for the electron-jet analysis
 - calorimeter isolation (fraction of E_{T} for all cells around any muon)

Prompt lepton-jets: <u>results from 4.5 fb⁻¹ at 7 TeV</u>

- ABCD method for background estimation
 - electron-jet analysis: electron cluster concentration and EM fraction for the 2^{nd} highest- p_{π} electron-jet
 - single (double) muon-jet analysis: scaled isolation variable $p_{_{T}}$ cut on $3^{_{rd}}(4^{_{th}})$ muon

Selected events

	Electron LJ	1 Muon LJ	2 Muon LJ
Data	15	7	3
All background	15.2 ± 2.7	3.0 ± 1.0	0.5 ± 0.3

- No significant excess of events found in any channel on 4.5 fb⁻¹ at 7 TeV collected in 2011
 - Observed upper limits for $\sigma \times BR$ range from 0.017 to 1.2 pb
 - limits in the muon-channel slightly higher than expected but within 2o of the SM expectations

Signal	Parameters	Electron LJ	1 Muon LJ	2 Muon LJ
α_d	m_{γ_D} [MeV]	Obs (Exp) pb	Obs (Exp) pb	Obs (Exp) pb
0.0	150	0.082 (0.082)	-	-
0.0	300	0.11 (0.11)	0.060 (0.035)	0.017 (0.011)
0.0	500	0.20 (0.21)	0.15 (0.090)	0.019 (0.012)
0.10	150	0.096 (0.10)	-	-
0.10	300	0.37 (0.37)	0.064 (0.036)	0.018 (0.011)
0.10	500	0.39 (0.39)	0.053 (0.035)	0.018 (0.011)
0.30	150	0.11 (0.11)	-	-
0.30	300	0.40 (0.40)	0.099 (0.055)	0.020 (0.012)
0.30	500	1.2 (1.2)	0.066 (0.043)	0.022 (0.015)

2. W + prompt electron jets

- WH production
- light Higgs boson (100 to 140 GeV) decays via a two (three) steps cascade to hidden sector particles
 - two hidden scalars $h_{d,1}$ and $h_{d,g}$
 - a neutral weakly interacting stable scalar n_a
 - dark photons γ_d < 200 MeV decay exclusively to collimated e^+e^- pairs
- W reconstructed both in electron / muon channels
- Signal topology:
 - an isolated high p_T lepton + E_T^{miss} + >= 2 electron-jets (>= 4 e per jet)
- Triggers:
 - reconstructed electron > 22 GeV
 - reconstructed muon in ID + MS > 18 GeV

Parameter	
$m_{h_{\rm d,1}}$	10 GeV
$m_{h_{\rm d,2}}$	4 GeV
$m_{n_{\rm d}}$	90 MeV
$m_{\gamma_{\rm d}}$	100, 200 MeV

I free-step model	
$\mathrm{BR}(h_{\mathrm{d},1} \to h_{\mathrm{d},2}h_{\mathrm{d},2})$	1
$\mathrm{BR}(h_{\mathrm{d},2} \to \gamma_{\mathrm{d}} \gamma_{\mathrm{d}})$	0.8
$BR(h_{d,2} \rightarrow n_d n_d)$	0.2
Two-step model	
$BR(h_{d,2} \rightarrow \gamma_d \gamma_d)$	1
$BR(h_{d,2} \rightarrow n_d n_d)$	0

New Journal of Physics 15 (2013) 043009

W + prompt electron jets: selection criteria

• W boson decay

- both electron and muon channel considered
- isolation criterion on both electron and muon, to reduce background from multi-jet events
- $E_{T}^{miss} >= 25 \text{ GeV}$
- W is required to originate from the primary vertex

• Electron-jet pairs

- at least 4 electrons per jet
- jet $p_{T} \geq 30 \text{ GeV}$
- electrons are very collimated ---> reconstructed jets
- reject hadronic jets by requiring high EM fraction >= 0.99
- reject photons from neutral pions by requiring jet charged particle fraction >= 0.66
- At least 2 tracks associated with jets in a cone $\Delta R < 0.4$
 - quality cut on silicon detectors hits
 - fraction of TRT high threshold hits

W + prompt electron jets: results from 2.04 fb⁻¹ at 7 TeV

- No significant excess of events found in any channel on 2.04 fb⁻¹ at 7 TeV collected in 2011
 - Event yield in the signal region consistent with background only hypothesis
 - 1 event in the W muon channel
 - O events in the W electron channel
 - Limits at m_{yd} = 100 and 200 MeV compatible
 within the statistical uncertainties
 - Assuming WH SM cross section, Higgs BR to electron-jets between 24 and 45% excluded at 95% CL for m_H = 125 GeV

Signal	Three-step model		Two-step model			
$m_{\rm H}({ m GeV})$	$m_{\gamma_{\rm d}} = 100 { m MeV}$	$m_{\gamma_{\rm d}} = 200 { m MeV}$	$m_{\gamma_{\rm d}} = 100 {\rm MeV}$	$m_{\gamma_{\rm d}} = 200 { m MeV}$		
100	$14.3 \pm 1.7 \pm 0.8$	$12.4 \pm 1.6 \pm 0.7$	$22.6 \pm 2.1 \pm 1.2$	$23.5 \pm 2.1 \pm 1.2$		
125	$11.3 \pm 1.0 \pm 0.6$	$10.7 \pm 1.1 \pm 0.6$	$16.2 \pm 1.2 \pm 0.9$	$18.1 \pm 1.4 \pm 1.0$		
140	$9.6 \pm 0.8 \pm 0.5$	$9.0 \pm 0.8 \pm 0.4$	$13.7 \pm 0.9 \pm 0.8$	$13.9 \pm 0.9 \pm 0.8$		
Background	$0.41 \pm 0.29 \pm 0.12$					
Data	1					

D. Salvatore

3. Displaced muon-jets

- Higgs boson decays to a pair of neutral hidden fermions (f_{d2})
 - each f_{d2} decays to one **long-lived** γ_{d} and one stable neutral hidden fermion (f_{d1})
- γ_{d} to two collimated lepton jets
 - $\gamma_{a} p_{T} > 20 \text{ GeV}; \Delta R_{11} < 0.1$
 - for mass = 400 MeV 45% e^+e^- , **45%** $\mu^+\mu^-$, 10% $\pi^+\pi^-$
- γ_{d} pair emitted back-to-back
- trigger: 3 muons reconstructed only in the MS with $p_{\pi} \ge 6 \text{ GeV}$
- expected background
 - multi-jet processes, cosmic rays

Higgs mass	$m_{f_{d2}}$	$m_{f_{d1}}$	γ_d mass	$c\tau$
[GeV]	[GeV]	[GeV]	[GeV]	[mm]
100	5.0	2.0	0.4	47
140	5.0	2.0	0.4	36

Physics Letters B, 721, 32 (2013)

Displaced muon-jets:

selection criteria

- reconstructed from the highest p_{π} muon and associating all muons in $a \Delta R = 0.2$ cone
- At least 2 muons per MJ
- 2 back-to-back MJs per event
 - |ΔΦ| > 2
- Calorimetric isolation variable $(E_{\pi}^{isol}) \leq 5 \text{ GeV}$
 - difference of $E_{_{\!\!\rm T}}$ in a ΔR = 0.4 cone around the highest p_{π} muon and E_{π} in $\Delta R = 0.2$
- Sum of track $p_{\pi} < 3 \text{ GeV}$
 - scalar sum of $p_{\rm m}$ of the tracks in a ΔR = 0.4 cone around the direction of the MJ
- γ_{a} reconstruction efficiency tested on $J/\Psi \rightarrow \mu^{\dagger}\mu^{\dagger}$

€ rec

0.5

0.4

0.3

0.2

0.1

0

0.6

0.4

0.2

0.0

rec

ພ

0

ATLAS Simulation

– m_H = 100 GeV

-- m_H = 140 GeV

0.04

0.02

.....

-2

-1

0

(b)

0.06

 $\Delta R_{\mu\mu}$

Displaced muon-jets results from 1.94 fb⁻¹ at 7 TeV

- multi-jet background estimation through ABCD method
 - $E_{T}^{isol} |\Delta \Phi|$ plane
 - expected 0.06 events
- No excess of events observed in 1.94 fb⁻¹ at 7 TeV
 - Assuming BR (H---> $\gamma_a \gamma_a + X$) = 10% γ_a proper lifetimes excluded
 - from 5 to 159 mm for $m_{_{\rm H}} = 100 \text{ GeV}$
 - from 7 to 82 mm for $m_{_{\rm H}}$ = 140 GeV

cut	cosmic-rays	multi-jet	total background	$m_H = 100 \text{ GeV}$	$m_H = 140 \text{ GeV}$	data
$N_{\rm MJ} = 2$	3.0 ± 2.1	N/A	N/A	$135 \pm 11^{+29}_{-21}$	$90\pm9^{+17}_{-13}$	871
$E_{\rm T}^{\rm isol} \le 5 ~{ m GeV}$	3.0 ± 2.1	N/A	N/A	$132 \pm 11^{+28}_{-21}$	$88 \pm 9^{+17}_{-13}$	219
$ \Delta \phi \geq 2$	1.5 ± 1.5	$153 \pm 18 \pm 9$	$155 \pm 18 \pm 9$	$123 \pm 11^{+26}_{-19}$	$81 \pm 9^{+15}_{-12}$	104
$Q_{MJ} = 0$	1.5 ± 1.5	57 ±15±22	$59 \pm 15 \pm 22$	$121 \pm 11^{+26}_{-19}$	$79\pm8^{+15}_{-12}$	80
$ d_0 , z_0 $	$0^{+1.64}_{-0}$	111±39±63	111±39±63	$105 \pm 10^{+22}_{-16}$	$66\pm8^{+12}_{-10}$	70
$\Sigma p_{\rm T}^{\rm ID} < 3~{ m GeV}$	$0^{+1.64}_{-0}$	$0.06 \pm 0.02^{+0.66}_{-0.06}$	$0.06^{+1.64+0.66}_{-0.02-0.06}$	$75\pm9^{+16}_{-12}$	$48 \pm 7^{+9}_{-7}$	0

4. Displaced vertices

- Higgs boson decays to two hidden sector **long-lived neutral** v-pion (π_v)
 - π_{v} pairs emitted back-to-back
- Each π_{u} decays into heavy-fermion pairs
 - mainly bb
- search for decays near the outer radius of hadronic calorimeter or in the muon spectrometer (MS)
- dedicated trigger
 - MuonRoICluster trigger selects events with a cluster of >= 3 muon RoIs in a ΔR = 0.4 cone in the MS barrel chambers
- dedicated vertex reconstruction
- background rejection
 - punch-through jets and muon bremsstrahlung suppressed by requiring isolation in calorimeters and ID

Physical Review Letters, 108, 251801 (2012)

Displaced vertices:

selection criteria

Vertices in the MS

- Specialized tracking and vertex reconstruction algorithm
 - $\begin{array}{ll} & & \pi_v \mbox{ decays in the MS characterized by low } p_{_{\rm T}} \\ & \mbox{ particles (~10 charged particles and ~5 π^0 \\ & \mbox{ clustered in a small region)} \end{array}$
 - detectable vertices between the outer radius of HCAL and the middle station of the MS
 - high occupancy in MDTs
- Requirement for a vertex
 - At least 3 tracklets grouped in $\Delta R = 0.6$
 - point back to IP
 - Separated from ID tracks and jets
- Reconstruction efficiency
 - 40% in barrel region (4-7.5 m)
 - 40% in endcaps (8-14 m)
- two good vertices per event, $\Delta R > 2$

- Background estimated from a fully data-driven method based on:
 - probability for a random event to contain a MS vertex
 - probability to reconstruct a vertex in an event which passed the RoI cluster trigger
 - estimated 0.03 ± 0.02 events

- No data pass the selection criteria in 1.94 fb⁻¹ at 7 TeV
 - Assuming a 100% BR for $H ---> \pi_v \pi_v$ a wide range of proper lifetimes is escluded at 95% CL

40

140

 $1.10 < c\tau < 26.75 \text{ m}$

Conclusions

- Long-lived particles and lepton-jets are predicted by a number of theories beyond the Standard Model
- Challenging detector signatures requiring detailed work on dedicated trigger and reconstruction algorithms
- Extensive search program conducted by the ATLAS Collaboration on the 2011 7 TeV dataset
- Analysis teams are now actively working on the 2012 8 TeV dataset and first results will be public soon
- Analysis techniques are being improved
- More statistics but also more final states

BACKUP

Prompt lepton-jets:

selection criteria

Electron-jet

- at least a p_T > 35 GeV reconstructed electron (trigger efficiency constant)
- candidates built from EM clusters
 - $E_{\pi} > 10 \text{ GeV}$ in calorimeter fiducial region
 - at least two PV tracks with $p_T > 10 \text{ GeV}$, $|d_0| < 1 \text{ mm}, \Delta R < 0.1 \text{ wrt cluster in the}$ second sampling layer of ECAL
- invariant mass < 2 GeV for the 2 highest-p_T tracks associated with each e-jet
- 2 e-jet candidates per event
 - one matches the electron reconstructed in the trigger system
- main background from multi-jet events
 - cuts on the electron cluster concentration and lateral shower, high-threshold hits, electromagnetic fraction and fraction of E_{π} in

 $0.1 < \Delta R < 0.4$ around the cluster

Muon-jet

- all muons in $\Delta R < 0.1$ around highest-p_r muon
- muon candidates reconstructed in MS and ID
- $|d_0| < 1 \text{ mm cut on the tracks}$
- invariant mass < 2 GeV for the the 2 muons closest in $p_{_{\rm T}}$
- Single muon-jet analysis
 - 4 muons with $p_T > 19$, 16, 14 GeV + additional muons > 4 GeV
- Double muon-jet analysis
 - $2 \text{ muons with } p_{T} > 11 \text{ GeV per jet}$
- Scaled isolation variable (to suppress muons from hadronic jets)
 - $\begin{array}{ll} & \text{sum of } \mathbb{E}_{_{\mathrm{T}}} \text{ for all cells with } 0.05 < \Delta \mathrm{R} < 0.3 \\ & \text{around any muon divided by muon-jet } \mathrm{p}_{_{\mathrm{T}}} \end{array}$
 - less than 0.15 (0.3) for single (double) muonjet analysis

W + prompt electron jets: selection criteria

W boson decay

- both electron and muon channel considered
- sum of the p_{T} of all tracks in $\Delta R < 0.4$ around the electron (muon) divided by electron (muon) $p_{T} < 0.3 (0.2)$
- $E_{T}^{miss} >= 25 \text{ GeV}$
- Trigger matching
 - $\Delta R < 0.1$ between the trigger object and the reconstructed lepton
- W is required to originate from the primary vertex
 - vertex with largest sum of p_{π}^{2} for all tracks
 - track longitudinal and transverse impact parameters wrt PV < 10 mm and 0.1 mm respectively

• Electron-jet pairs

- at least 4 electron per jet
- electron very collimated ---> reconstructed jets
- $p_{T} >= 30 \text{ GeV}$
- Rejection of hadronic jets
 - high EM fraction (>= 0.99)
- Rejection of photons from neutral pions
 - jet charged particle fraction
 - fraction of the jet energy deposited in cells that are associated to tracks within the jet
 - At least 2 tracks associated with jets in a cone $\Delta R < 0.4$
 - $p_T \geq 5 \text{ GeV}$
 - cut on silicon detectors hits
 - fraction of TRT high threshold hits