

Searches for fourth generation, vector-like quarks and tt resonances with the ATLAS detector

Snežana Nektarijević Université de Genève, Geneva, Switzerland

On behalf of the ATLAS Collaboration

In this Talk

ť

b'

g'

Ζ'

Standard Model Particles

Heavy quarks
 Chiral fourth generation
 Vector-like quarks

Heavy bosons decaying into tt pairs

- Topcolor models
- Randall-Sundrum models

17/5/13

... potentially addressing some of the SM open questions

Heavy Quark Searches

17/5/13

Heavy Quarks - Theory

Chiral fourth generation quarks

- ✤ additional source of CP violation
 - potentially addressing baryon asymmetry
- ✤ Incompatible with the SM Higgs boson

✤ Vector-like quarks

- Postulated by the models addressing the hierarchy problem without SUSY
 - ✤ Little Higgs models, extra dimension models etc
- Left-handed and right-handed components transform the same way under SU(2)xU(1)
- Cancel quadratic divergences of Higgs mass in the top loop
- ✤ No Yukawa coupling to the Higgs field

Dominant production mechanism at 7 TeV and 8 TeV: Pair production via strong interaction

J. A. Aguilar-Saavedra, JHEP 0911 (2009) 030

arXiv:0907.3155 [hep-ph]

VLQ singlet	Decay modes
T _{+2/3}	W⁺b, Ht, Zt
B _{-1/3}	W⁻t, Hb, Zb
T _{+5/3}	W⁺t
B _{-4/3}	W ⁻ b

VLQ	Decay
doublet	modes
T _{+2/3}	W⁺b, Ht, Zt
B _{-1/3}	W⁻t, Hb, Zb
T _{+2/3}	Ht, Zt
T _{+5/3}	W⁺t
B _{-1/3}	Hb, Zb
B _{-4/3}	W⁻b

 \Rightarrow

 \Rightarrow

 \Rightarrow

ATLAS

$t'\bar{t}' \rightarrow Ht + X \rightarrow I + jets + E_{T}^{miss}$ Interpretation

- Hypothesis testing with CLs method using log-likelihood ratio as test-statistic
 - Scaling factors of $t\bar{t}$ +lf and $t\bar{t}$ +hf fitted to data
- Limits at 95% CL placed in the BR(t'->Ht) vs BR(t'->Wb) plane \Rightarrow

Bounds at 95% CL:

the high BR(t'->Wb) region better 0

X→Same-Sign Dilepton+Jets Analysis Strategy

- ✤ Very low production rate in the SM
- Relatively model-independent search. Models compatible with this final state:
 - ✤ Fourth generation b'
 - Vector-like B and T
 - Positively charged tt production
 - tttt production
 - ✤ In the SM
 - ✤ Via contact interaction
- Final states tested include:
 - ↔ ≥ 2 same sign leptons ($e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$)
 - ♦ Z veto in $e^{\pm}e^{\pm}$, μ[±]μ[±]
 - ≥ 2 jets
 - * E_T^{miss} >= 40 GeV

```
Final selection optimized for every ——
signal separately:
```

Data/Prediction comparison for ≥1 b tag

	ee	$e\mu$	$\mu\mu$
Prediction	2.7 ± 0.6	4.4 ± 1.0	2.3 ± 1.2
Data	3	10	2

- Data driven fake leptons and charge misidentification rate estimation
- Dominant systematic uncertainty:
 - Predicted background cross sections
- Limits extracted by cut and count technique

		b' and VLQ	$t \overline{t}$	$t\bar{t}t\bar{t}$
	H_T	$> 650 \mathrm{GeV}$	$> 550 \mathrm{GeV}$	$> 650 \mathrm{GeV}$
→	$N_{b ext{-jets}}$	≥ 1	≥ 1	≥ 2
	Charge	土土	++	土土

ATLAS

X→Same-Sign Dilepton+Jets b' Interpretation

17/5/13

X→Same-Sign Dilepton+Jets VLQ Interpretation

ATLAS 17/5/13

X→Same-Sign Dilepton+Jets tī and tītī Interpretation

ATLAS-CONF-2013-051 14.3 fb⁻¹, 8 TeV

tt Resonances Searches

17/5/13

tt Resonances Theory

- Benchmark models used by the LHC experiments:
 - Narrow width leptophobic topcolor Z' boson with Γ/m ~ 1.2%
 - Explains the top quark mass and the EWSB through top quark condensation associated with symmetry breaking of a new strong force (Eur.Phys.J. C72 (2012) 2072)
 - Wide width Kaluza-Klein gluon with
 Γ/m ~ 15%
 - Arises in the bulk Randall-Sundrum model with an extra dimension with warped geometry

(Phys. Rev. D77 (2008) 015003)

17/5/13

$t\bar{t} \rightarrow l+jets+E_T^{miss}$ Analysis Strategy

Search for heavy resonances decaying ^{Benjamin Dechenaux's Poster} into tt pairs in the I+jets+E^{miss} final state

17/5/13

ATLAS

$t\bar{t} \rightarrow l+jets+E_T^{miss}$ Analysis Strategy

- Discriminant: reconstructed tī mass
- Event reconstruction:
 - Boosted:
 - no ambiguities
 - Resolved:
 - Neutrino p_z and jet
 assignment by minimizing the χ² function:

$$\chi^{2} = \left[\frac{m_{jj} - m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{m_{jjb} - m_{jj} - m_{th-W}}{\sigma_{W}}\right]^{2} + \left[\frac{m_{j\ell\nu} - m_{t\ell}}{\sigma_{W}}\right]^{2}$$

+
$$\left[\frac{(p_{\mathrm{T},jjb} - p_{\mathrm{T},j\ell\nu}) - (p_{\mathrm{T},t_h} - p_{\mathrm{T},t_\ell})}{\sigma_{\mathrm{diff}p_{\mathrm{T}}}}\right]^2$$

The dominant systematic uncertainty:
 tt cross section

17/5/13

$t\bar{t} \rightarrow l+jets+E_T^{miss}$ Interpretation

- Data/Prediction agreement scaned over the full tt mass range using the BumpHunter, taking the look-elsewhere effect into account
- ✤ Bayesian exclusion limits placed

ATLAS 17/5/13

Summary

No evidence of presence of pair-produced fourth generation and vector-like quarks, same-sign top pair production, four top production and heavy bosons decaying into top-antitop pairs has been observed.

The following 95% CL limits have been placed:

Particle/process	Limit	Decay mode / final state	CME [TeV]
4G t' / B _{-4/3}	m > 656 GeV	t'/T _{+5/3} ->Wb	7
4G b'	m > 720 GeV	b'->Wt	8
T _{+2/3} singlet	m > 640 GeV	t'->Ht	8
T _{+2/3} doublet	m > 790 GeV	t'->Ht	8
B _{-1/3} doublet	m > 590 GeV	Same-sign dilepton	8
leptophobic Z'	m _{z'} < 0.5 TeV or m _{z'} > 1.8 TeV	Z'->tī	8
K-K gluon	m _{gkk} < 0.5 TeV or m _{gkk} > 2.0 TeV	g _{kk} ->tī	8
4-tops production	σ(t̄t̄t̄t) < 85 fb in SM σ(t̄t̄tī) < 59 fb via c.i.	Same-sign dilepton	8
Same-sign top pair production	σ(tt) < 21 fb	Same-sign dilepton	8

17/5/13

ATL A

Backup

17/5/13

Motivation

Standard Model Particles

17/5/13

ATLAS

- The ATLAS detector very well calibrated by the SM precision measurements with 7 TeV and 8 TeV data
- Now we can look for new physics!

Common Object Definitions

✤ Electrons

- Isolated EM calorimeter objects matched to inner detector tracks
 - φ_T>25 GeV, |η| < 2.47 excluding
 1.37<|η|<1.52

Muons

- Track segments from the muon spectrometer matched to inner detector tracks

✤ Jets

- Reconstructed from topological clusters with the inclusive AntikT algorithm with R=0.4
- 🔶 Fat Jets
 - Reconstructed from the locallycalibrated topological clusters using the inclusive AntikT algorithm with R=1

- ✤ Common event selection:
 - ✤ Single el/mu trigger
 - >=1 primary vertex with >=5 associated tracks
- ✤ In lepton + jets searches:
 - + Separate el and mu channel

t't'->Ht+X->I+jets+E^{miss} – Event Yields

	\geq 6 jets, 2 <i>b</i> -tags	\geq 6 jets, 3 <i>b</i> -tags	\geq 6 jets, \geq 4 <i>b</i> -tags
tī+heavy-flavour jets	1500 ± 900	900 ± 400	170 ± 70
tt+light-flavour jets	9600 ± 1000	1900 ± 350	75 ± 22
W+jets	250 ± 130	50 ± 30	5 ± 3
Z+jets	50 ± 40	9 ± 6	0.5 ± 0.9
Single top	300 ± 70	75 ± 18	7 ± 3
Diboson	1.7 ± 0.6	0.3 ± 0.1	0.03 ± 0.03
tīV	70 ± 20	36 ± 12	7 ± 3
tīH	28 ± 4	31 ± 6	12 ± 3
Multijet	49 ± 23	1.7 ± 0.8	0.15 ± 0.06
Total background	11860 ± 260	2990 ± 210	270 ± 60
Data	11885	2922	318
Doublet			
$t'\bar{t'}(400)$	550 ± 70	1100 ± 100	790 ± 160
$t'\bar{t'}(600)$	4.3 ± 1.2	94 ± 7	79 ± 18
$t'\bar{t'}(800)$	0.12 ± 0.05	10.7 ± 0.8	9.1 ± 2.1
Singlet			
$t'\bar{t'}(400)$	290 ± 30	650 ± 80	330 ± 70
$t'\bar{t'}(600)$	2.3 ± 0.4	61 ± 7	36 ± 9
$t'\bar{t'}(800)$	0.06 ± 0.01	6.9 ± 0.7	4.2 ± 1.1

Table 1: Predicted and observed yields in the combined e+jets and μ +jets channels with ≥ 6 jets as a function of *b*-tag multiplicity. The $t\bar{t}$ background prediction is after fitting to data using the full $H_{\rm T}$ spectrum (see text for details). Also shown is the expected $t'\bar{t}'$ signal in both the doublet and singlet scenarios for $m_{t'} = 400$, 600 and 800 GeV. The uncertainties shown are post-fit and include the effect of statistical and systematic uncertainties. The uncertainty on the total background is smaller than the sum in quadrature of the uncertainties on the individual background sources due to the anti-correlation between the $t\bar{t}$ +light jets and $t\bar{t}$ +heavy-flavour jets components resulting from the fit.

17/5/13

Snežana Nektarijević, LHCP 13-18 May 2013, Barcelona

14.3 fb⁻¹, 8 TeV

Same-Sign 8 TeV b'/VLQ Signal Region Event Yields

Table 5: Observed and expected number of events with statistical (first) and systematic (second) uncertainties for the b'/VLQ signal selection.

Backgrounds		Channel	
Samples	ee	еμ	μμ
Charge misidentification	$0.6 \pm 0.1 \pm 0.2$	$0.9 \pm 0.1 \pm 0.3$	—
Fakes	$0.8 \pm 0.4 \pm 0.3$	$0.2 \pm 0.4 \pm 0.1$	< 1.1
Diboson			
• WZ/ZZ+jets	$0.3 \pm 0.2 \pm 0.1$	$0.3 \pm 0.1^{+0.4}_{-0.2}$	$0.4 \pm 0.2 \pm 0.1$
• $W^{\pm}W^{\pm}+2$ jets	$0.17 \pm 0.09 \pm 0.05$	$0.3 \pm 0.2 \pm 0.1$	$0.2 \pm 0.1 \pm 0.1$
$t\bar{t} + W/Z$			
• $t\bar{t}W(+jet(s))$	$0.6 \pm 0.2 \pm 0.3$	$1.9\pm0.2\pm0.6$	$1.3 \pm 0.2 \pm 0.4$
• $t\bar{t}Z(+jet(s))$	$0.18 \pm 0.03 \pm 0.06$	$0.66 \pm 0.05 \pm 0.22$	$0.31 \pm 0.04 \pm 0.10$
• $t\bar{t}W^+W^-$	$0.024 \pm 0.003^{+0.010}_{-0.007}$	$0.072 \pm 0.005^{+0.028}_{-0.020}$	$0.055 \pm 0.004^{+0.022}_{-0.016}$
Total expected background	$2.7 \pm 0.5 \pm 0.4$	$4.4 \pm 0.5^{+0.9}_{-0.7}$	$2.3 \pm 1.2 \pm 0.5$
Observed	3	10	2

Table 8: Event selection efficiencies (in percent), relative to the inclusive cross section for the $b' \rightarrow Wt$ and $b' \rightarrow Wq$ (~ 1/3 for each q = u, c, t) signals, for several generated mass points. They are computed with respect to the generated events passing the lepton filter, and where the *W* is free to decay hadronically or leptonically.

Process	Channel		
	ee	еμ	μμ
$b'(400 \text{ GeV}) \rightarrow Wt$	0.11 ± 0.01	0.39 ± 0.02	0.25 ± 0.02
$b'(600 \text{ GeV}) \rightarrow Wt$	0.30 ± 0.02	0.82 ± 0.03	0.53 ± 0.02
$b'(800 \text{ GeV}) \rightarrow Wt$	0.37 ± 0.02	1.02 ± 0.03	0.64 ± 0.02
$b'(1000 \text{ GeV}) \rightarrow Wt$	0.35 ± 0.02	1.11 ± 0.03	0.63 ± 0.02
$b'(400 \text{ GeV}) \rightarrow Wq$	0.024 ± 0.004	0.082 ± 0.007	0.060 ± 0.006
$b'(600 \text{ GeV}) \rightarrow Wq$	0.09 ± 0.01	0.25 ± 0.01	0.14 ± 0.01
$b'(800 \text{ GeV}) \rightarrow Wq$	0.13 ± 0.01	0.32 ± 0.01	0.19 ± 0.01
$b'(1000 \text{ GeV}) \rightarrow Wq$	0.10 ± 0.01	0.32 ± 0.02	0.20 ± 0.01

Table 9: Event selection efficiencies (in percent), relative to the inclusive cross section for the vector-like T(B) signal for several generated T(B) mass points. Efficiencies are computed assuming the branching ratios from the singlet model.

0			
Process	Channel		
	ee	еμ	$\mu\mu$
TT (350 GeV)	0.013 ± 0.002	0.038 ± 0.003	0.024 ± 0.003
TT (550 GeV)	0.055 ± 0.004	0.136 ± 0.006	0.082 ± 0.005
TT (750 GeV)	0.065 ± 0.005	0.176 ± 0.008	0.080 ± 0.005
TT (850 GeV)	0.065 ± 0.005	0.171 ± 0.007	0.093 ± 0.005
BB (350 GeV)	0.011 ± 0.002	0.043 ± 0.004	0.024 ± 0.003
BB (550 GeV)	0.068 ± 0.005	0.218 ± 0.008	0.129 ± 0.006
BB (750 GeV)	0.098 ± 0.006	0.269 ± 0.009	0.185 ± 0.008
BB (850 GeV)	0.128 ± 0.006	0.344 ± 0.010	0.191 ± 0.008

Same-Sign 8 TeV tt Signal Region Event Yields

Table 6: Observed and expected number of events with statistical (first) and systematic (second) uncertainties for the positively-charged top pair signal selection.

	Channel		
Samples	ee	еμ	μμ
Charge misidentification	$0.6 \pm 0.1 \pm 0.2$	$0.5 \pm 0.1 \pm 0.2$	_
Fakes	$0.6\pm0.4\pm0.2$	$1.0 \pm 0.4 \pm 0.3$	$0.7 \pm 0.7 \pm 0.2$
Diboson			
• WZ/ZZ +jets	$0.2 \pm 0.1 \pm 0.1$	$0.5 \pm 0.3 \pm 0.2$	$0.6 \pm 0.3 \pm 0.2$
• $W^{\pm}W^{\pm}+2$ jets	$0.16 \pm 0.08 \pm 0.04$	$0.3 \pm 0.2 \pm 0.1$	$0.2 \pm 0.1 \pm 0.1$
$t\bar{t} + W/Z$			
• $t\bar{t}W(+jet(s))$	$0.7 \pm 0.1 \pm 0.2$	$2.2 \pm 0.1 \pm 0.7$	$1.5 \pm 0.1 \pm 0.5$
• $t\bar{t}Z(+jet(s))$	$0.18 \pm 0.03 \pm 0.06$	$0.59 \pm 0.05 \pm 0.19$	$0.26 \pm 0.03 \pm 0.09$
• $t\bar{t}W^+W^-$	$0.013 \pm 0.002 \pm 0.005$	$0.053 \pm 0.004 \pm 0.021$	$0.032 \pm 0.003 \pm 0.013$
Total	$2.5 \pm 0.4 \pm 0.4$	$5.1 \pm 0.5 \pm 0.9$	$3.3 \pm 0.8 \pm 0.7$
Observed	3	8	1

Table 10: Event selection efficiencies (in percent), relative to the dileptonic cross section (both W bosons must decay to e, μ or τ), for the positively-charged top pair signal.

Process	Channel		
	ee	еμ	$\mu\mu$
Left-left	0.48 ± 0.02	1.59 ± 0.04	1.27 ± 0.04
Left-right	0.41 ± 0.02	1.46 ± 0.04	1.19 ± 0.03
Right-right	0.40 ± 0.02	1.42 ± 0.04	1.14 ± 0.03

Same-Sign 8 TeV 4-tops Signal Region Event Yields

Table 7: Observed and expected number of events with statistical (first) and systematic (second) uncertainties for the four top quarks signal selection.

	Channel		
Samples	ee	еμ	μμ
Charge misidentification	$0.16 \pm 0.04 \pm 0.05$	$0.41 \pm 0.07 \pm 0.12$	_
Fakes	$0.18 \pm 0.17 \pm 0.05$	$0.07 \pm 0.28 \pm 0.02$	< 1.14
Diboson			
• WZ/ZZ +jets	< 0.1	$0.01 \pm 0.09 \pm 0.01$	< 0.11
• $W^{\pm}W^{\pm}+2$ jets	< 0.03	$0.18 \pm 0.16 \pm 0.07$	< 0.03
$t\bar{t} + W/Z$			
• $t\bar{t}W(+jet(s))$	$0.31 \pm 0.04 \pm 0.12$	$0.93 \pm 0.06 \pm 0.35$	$0.65 \pm 0.06 \pm 0.25$
• $t\bar{t}Z(+jet(s))$	$0.09 \pm 0.02 \pm 0.04$	$0.34 \pm 0.04 \pm 0.14$	$0.14 \pm 0.02 \pm 0.06$
• $t\bar{t}W^+W^-$	$0.012 \pm 0.002 \pm 0.005$	$0.039 \pm 0.003 \pm 0.016$	$0.024 \pm 0.003 \pm 0.01$
Total	$0.8 \pm 0.2 \pm 0.1$	$2.0 \pm 0.4 \pm 0.4$	$0.8 \pm 1.2 \pm 0.3$
Observed	1	6	1

Table 11: Event selection efficiencies (in percent), relative to the inclusive cross section, for the four top quarks signals (all decay modes of the W are included).

Process	Channel		
	ee	еµ	μμ
Standard Model	0.11 ± 0.01	0.39 ± 0.01	0.28 ± 0.01
Contact interaction	0.15 ± 0.01	0.53 ± 0.02	0.41 ± 0.02
Sgluon (350 GeV)	0.03 ± 0.01	0.09 ± 0.01	0.07 ± 0.01
Sgluon (400 GeV)	0.06 ± 0.01	0.17 ± 0.02	0.13 ± 0.02
Sgluon (500 GeV)	0.13 ± 0.02	0.47 ± 0.03	0.23 ± 0.02
Sgluon (600 GeV)	0.15 ± 0.02	0.61 ± 0.04	0.41 ± 0.03
Sgluon (800 GeV)	0.20 ± 0.02	0.75 ± 0.04	0.48 ± 0.03
Sgluon (1000 GeV)	0.16 ± 0.02	0.57 ± 0.03	0.49 ± 0.03
2UED/RPP (600 GeV)	0.26 ± 0.01	0.93 ± 0.02	0.66 ± 0.02
2UED/RPP (800 GeV)	0.25 ± 0.01	0.88 ± 0.02	0.67 ± 0.02
2UED/RPP (1000 GeV)	0.23 ± 0.01	0.85 ± 0.02	0.67 ± 0.02
2UED/RPP (1200 GeV)	0.22 ± 0.01	0.88 ± 0.02	0.67 ± 0.02

Same-Sign 8 TeV Table of Systematic Uncertainties

Table 3: Leading sources of systematic uncertainty on the signal and background estimates for the b'/VLQ selection, and their relative impact on the total background estimate. A b' mass of 650 GeV is assumed.

	Uncertainty in %					
	650 GeV b'		Background			
Source	ee	eμ	$\mu\mu$	ee	еμ	$\mu\mu$
Cross section	_	_	_	14.4	25.4	32.9
Fakes	_	_	_	9.7	1.4	10.1
Charge misidentification	_	_	_	7.2	7.1	_
Jet energy scale	4.6	2.5	0.2	3.5	10.2	4.4
ISR/FSR	6.0	6.0	6.0	2.6	4.5	4.0
b-tagging efficiency	4.6	3.1	3.0	2.1	4.4	4.0
Lepton ID efficiency	5.3	4.9	8.2	2.2	3.6	5.4
Jet energy resolution	0.8	0.9	0.3	0.9	2.7	2.0
Luminosity	3.6	3.6	3.6	1.6	2.7	3.6
Lepton energy scale	0.8	0.4	0.0	1.4	0.9	0.1
JVF selection efficiency	2.5	2.9	2.6	1.1	1.5	1.4

t't'->WbWb->I+jets+E_T^{miss}

signal

ť ť

b

W

4.7 fb⁻¹, 7 TeV

Benchmark: BR(t'->Wb)=1

- W_{had} reconstructed in 2 ways:
 Boosted
 - single jet, $p_T > 250$ GeV, mass in range (60, 110) GeV
 - Resolved
 - close-by dijet with $\Delta R(j,j) < 0.8$, p_T>150 GeV, mass in range (60, 110) GeV
- Event reconstruction:
 - b candidates:
 - 2 jets with the highest *b* tag probability; $p_{T_1} > 160 \text{ GeV}$ and $p_{T_1} > 60 \text{ GeV}$
 - W_{lep}: *l*+ν (neutrino p_z calculated analytically – quadratic equation)
 - Choice of the neutrino p_z solution and b
 jet assignment made by minimizing
 Δm(t',t')

- Analysis specific selection:
 - + $E_T^{miss}+m_T(W_{lep}) > 60 \text{ GeV}$
 - ✤ H_T > 750 GeV
 - $== 1 W_{had}$
 - ✤ Boosted, if >= 3 jets
 - Resolved, if >=4 jets and no boosted W_{had}
 - ▹ >= 1 b tagged jet
 - $\Delta R(I,v) < 0.4, min(\Delta R(I,b_{1,2})) > 1.4,$ $min(\Delta R(W_{had},b_{1,2})) > 1.4$

4.7 fb⁻¹, 7 TeV

t't'->WbWb->I+jets+E_T^{miss}

Benchmark: BR(t'->Wb)=1

- Dominant systematic uncertainties: tt Modeling
 - choice of the MC generator, ISR/FSR fragmentation models
 - Hypothesis testing with the CLs method

 \Rightarrow

t't'->WbWb->I+jets+E_T^{miss}

4.7 fb⁻¹, 7 TeV

- ✤ Reinterpretation in terms of VLQ $T_{2/3}$:
 - Three decay modes:
 T -> Wb/Ht/Zt
 - Limits in the mixing plane of
 B.R (T->Wb) and B.R. (T->Ht)
- Interpretations:
 - Singlet scenario:

 ★ m_T > 500 GeV
 - Doublet scenario:
 - not accessible with this analysis

17/5/13

4.7 fb⁻¹, 7 TeV t't'->WbWb->l+jets+E+^{miss} – Event Yields

	<i>loose</i> selection	tight selection
$t\bar{t}$	94 ± 26	4.2 ± 2.9
W+jets	5.4 ± 4.2	2.0 ± 1.4
Z+jets	0.5 ± 0.4	0.2 ± 0.2
Single top	7.2 ± 1.7	1.1 ± 0.5
Dibosons	0.1 ± 0.1	0.04 ± 0.04
Multi-jet	5.9 ± 8.4	3.8 ± 3.2
Total background	113 ± 30	11.3 ± 4.8
Data	122	11
$t'\bar{t'}(500 \text{ GeV})$		
Wb: Zt: Ht = 1.0: 0.0: 0.0	47.4 ± 6.3	28.2 ± 3.6
Wb: Zt: Ht = 0.5: 0.0: 0.5	25.4 ± 3.6	11.2 ± 1.5

Table 1: Number of observed events, integrated over the whole mass spectrum, compared to the SM expectation for the combined e+jets and μ +jets channels after the loose and tight selections. The expected signal yields assuming $m_{t'} = 500$ GeV for different values of $BR(t' \to Wb)$, $BR(t' \to Zt)$ and $BR(t' \to Ht)$ are also shown. The case of $BR(t' \rightarrow Wb) = 1$ corresponds to a fourth-generation t' quark. The quoted uncertainties include both statistical and systematic contributions.

17/5/13

ATLAS Collaboration, JHEP 01 (2013), arXiv:1211.2202

4.7 fb⁻¹, 7 TeV

tt -> Jets

Tested resonance models:

- Narrow width leptophobic topcolour Z' boson
- Kaluza-Klein gluon from + the bulk Randall-Sundrum model

17/5/13

ATLAS

Discriminating variable: reconstructed to mass

Dominant systematic uncertainty:

High E_{τ} jets or large jet multiplicity trigger

HEPTopTagger, jet $p_T > 200$ GeV

>= 2 top tagged fat jets associated with nearby

Top Template Tagger, jet $p_{\tau} > 450$ GeV

tt Mass [GeV]

Snežana Nektarijević, LHCP 13-18 May 2013, Barcelona

Selection

b tagged jets

Top taggers:

 \Rightarrow

17/5/13

ATLAS

Snežana Nektarijević, LHCP 13-18 May 2013, Barcelona

tt->l+v+jets->l+jets+Etmiss - Event Yields

Table 3: Data and expected background event yields after the resolved and boosted selections. The uncertainty on the normalization of the expected backgrounds yield is listed.

	Resol	ved selection	
Туре	<i>e</i> +jets	μ +jets	Sum
tī	94000 ± 15000	118000 ± 19000	211000 ± 33000
Single top	6800 ± 800	8400 ± 1100	15200 ± 1900
QCD e	3700 ± 1800	0 ± 0	3700 ± 1800
QCD mu	0 ± 0	10000 ± 5000	10000 ± 5000
W+jets	16000 ± 4000	23000 ± 6000	39000 ± 10000
Z+jets	1800 ± 400	1800 ± 400	3600 ± 800
Di-bosons	230 ± 50	320 ± 60	550 ± 100
Total	121000 ± 17000	162000 ± 23000	283000 ± 39000
Data	119490	160878	280251
	Boos	ted selection	
Туре	Boos e+jets	<i>ted selection</i> μ+jets	Sum
Type tī	$\frac{Boos}{e+\text{jets}}$ 2100 ± 500	ted selection μ +jets 2800 ± 600	Sum 4900 ± 1100
Type $t\bar{t}$ Single top	$Boos$ $e+jets$ 2100 ± 500 71 ± 15	ted selection μ +jets 2800 ± 600 105 ± 22	Sum 4900 ± 1100 176 ± 34
$ Type t\bar{t} Single top QCD e $	Boos $e+jets$ 2100 ± 500 71 ± 15 39 ± 19	ted selection μ +jets 2800 ± 600 105 ± 22 0 ± 0	Sum 4900 ± 1100 176 ± 34 39 ± 19
Type <u>t</u> t Single top QCD e QCD mu	Boos $e+jets$ 2100 ± 500 71 ± 15 39 ± 19 0 ± 0	ted selection μ +jets 2800 ± 600 105 ± 22 0 ± 0 32 ± 16	Sum 4900 ± 1100 176 ± 34 39 ± 19 32 ± 16
Type $t\bar{t}$ Single topQCD eQCD muW+jets	Boos $e+jets$ 2100 ± 500 71 ± 15 39 ± 19 0 ± 0 170 ± 60	ted selection μ +jets 2800 ± 600 105 ± 22 0 ± 0 32 ± 16 310 ± 90	Sum 4900 ± 1100 176 ± 34 39 ± 19 32 ± 16 480 ± 140
Type $t\bar{t}$ Single topQCD eQCD muW+jetsZ+jets	Boos $e+jets$ 2100 ± 500 71 ± 15 39 ± 19 0 ± 0 170 ± 60 18 ± 11	ted selection μ +jets 2800 ± 600 105 ± 22 0 ± 0 32 ± 16 310 ± 90 33 ± 8	Sum 4900 ± 1100 176 ± 34 39 ± 19 32 ± 16 480 ± 140 52 ± 15
Type $t\bar{t}$ Single topQCD eQCD muW+jetsZ+jetsDi-bosons	Boos $e+jets$ 2100 ± 500 71 ± 15 39 ± 19 0 ± 0 170 ± 60 18 ± 11 2.0 ± 0.8	ted selection μ +jets 2800 ± 600 105 ± 22 0 ± 0 32 ± 16 310 ± 90 33 ± 8 1.5 ± 1.4	Sum 4900 ± 1100 176 ± 34 39 ± 19 32 ± 16 480 ± 140 52 ± 15 3.5 ± 1.8
Type $t\bar{t}$ Single topQCD eQCD muW+jetsZ+jetsDi-bosonsTotal	Boos $e+jets$ 2100 ± 500 71 ± 15 39 ± 19 0 ± 0 170 ± 60 18 ± 11 2.0 ± 0.8 2400 ± 500	ted selection μ +jets 2800 ± 600 105 ± 22 0 ± 0 32 ± 16 310 ± 90 33 ± 8 1.5 ± 1.4 3300 ± 700	Sum 4900 ± 1100 176 ± 34 39 ± 19 32 ± 16 480 ± 140 52 ± 15 3.5 ± 1.8 5600 ± 1200

17/5/13