LHCP Conference 2013

Searches for supersymmetry in resonance production, R-parity violating signatures and events with long-lived particles with the ATLAS detector

Andres Florez - York University On behalf of the ATLAS Collaboration

May 17, 2013

Andres Florez (York U)

LHCP - Barcelona

May 17, 2013 1 / 16

ELE NOR

Outline

R-Parity Violating (RPV) SUSY

- RPV 4 Lepton
- RPV $e \mu$, $e \tau$ or $\mu \tau$ Resonance
- Pair of 3 Jet Resonances
- Pair of 2 Jet Resonance (sgluon)
- Long-Lived Particles:
 - Non-pointing Photons
 - Displaced Vertex
 - Disappearing Tracks
 - Stable Massive Particles (SMPs)

> < = > < = > = = < < < >

R-Parity Violating (RPV) SUSY Searches

- Many SUSY models assume R-parity conservation to forbid leptonand baryon-number violating decays.
- For example, models with a stable neutralino $(\tilde{\chi}^0)$ as the Lightest Supersymmetric Particle (LSP) are common (dark matter candidate).
- This parity is defined as: $P_R = (-1)^{3(B-L)+2S}$, where S, B and L correspond to the spin, baryon and lepton numbers of the particle.
- Nevertheless, there is no experimental evidence forbidding a RPV super-potential:

$$W_{RPV} = \underbrace{\lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k}_{\text{Lepton Violating}} + k_i L_i H_2 + \underbrace{\lambda''_{ijk} \bar{D}_i \bar{D}_j \bar{D}_k}_{\text{Baryon Violating}}$$

• Stability of proton forbids simultaneous lepton and baryon number violation.

• We conduct RPV searches on both multi-leptonic and multi-jet final states.

Andres Florez (York U)

LHCP - Barcelona

RPV 4 Lepton Search (Conference Note) https://cds.cern.ch/record/1532429

- Non-zero λ coupling can give rise to final states with high lepton multiplicity.
- Analysis Characteristics
 - I High signal to background (BG) ratio.
 - Irreducible BGs contain 4 real leptons.

• Event Selection Criteria

- Inclusive single and double lepton trigger.
- ② ≥ 4 leptons $(p_T^{min} > 10 GeV)$ with ≥ 1(2) above trigger p_T^{min} .
- Z candidate veto
- RPV Signal Region (SR) selections:

SR	$N_{(e,\mu)}$	$N(\tau)$	E_{miss}^T or $m_{eff}[GeV]$
SR0noZ _b	≥ 4	= 0	> 75 or > 600
SR1noZ	= 3	$\geqslant 1$	$>100 \ { m or}>400$

✓ See Matt Relich's talk for other signal regions on RPC models. Andres Florez (York U) LHCP - Barcelona

- Background Estimation
 - Irreducible BGs are estimated from MC.
 - Oata-MC agreement checked in control regions.

RPV 4 Lepton Search

BG	SR0noZ _b	SR1noZ	
ZZ	0.50 ± 0.26	0.19 ± 0.05	
ZZW	0.08 ± 0.08	0.05 ± 0.05	
tīZ	0.75 ± 0.35	0.16 ± 0.12	
Higgs	0.22 ± 0.07	0.23 ± 0.06	
Irreducible BG	1.6 ± 0.6	0.62 ± 0.21	
Reducible BG	$0.05\substack{+0.14\\-0.05}$	1.4 ± 1.3	
Total BG	1.6 ± 0.6	2.0 ± 1.3	
Data	1	4	

- No excess over SM background is observed.
- ✓ The results are interpreted in simplified SUSY models which include several different choices of NLSP (Next to LSP).
 - LSP : Bino-like neutralino
 - NLSP: Wino charginos, left-slepton, sneutrinos, gluino.

- ✓ Wino excl: ~ 750 *GeV* (λ_{121}) and ~ 400 *GeV* (λ_{133})
- ✓ Gluino excl: \sim 1400 *GeV* (λ_{121}) and \sim 1000 *GeV* (λ_{133})

Andres Florez (York U)

Search For Heavy Resonances Decaying to $e - \mu$ (PLB) http://arxiv.org/abs/1212.1272

6 / 16

Pair of 3 Jet Resonance Search (JHEP) http://link.springer.com/article/10.1007/JHEP12(2012)086

- Search for RPV decays of gluino into three quarks.
- Two complementary methods are used:
 - In Resolved Analysis: Resolve all six jets → optimized for high-mass g̃.
 - ② Boosted analysis: Exploit the collimation of the decay products → ğ produced with large boost: p_T > 2 × m_ğ

Resolved: exclu $m_{\tilde{g}} < 666 \text{ GeV}$

Boosted: exclu $m_{\tilde{g}} < 255 \text{ GeV}$

20000000

Also: interpretation of SS+jets+MET (ATLAS-CONF-2013-007 \rightarrow 2012 data) analysis in RPV models with $\tilde{g} \rightarrow t + \tilde{t}, \tilde{t}(RPV) \rightarrow bs: m_{\tilde{g}} < 880$ GeV excluded (Analysis details in M. Fehling-Kaschek's talk)

Andres Florez (York U)

LHCP - Barcelona

May 17, 2013 7 / 16

Search for Pair-Produced sgluons Decaying to Four Jets (EPJC)

http://epjc.epj.org/index.php?option=com_article&access=doi&doi=10.1140/epjc/s10052-012-2263-z&Itemid=129

- Event selection criteria:
 - $\begin{array}{ll} & \mbox{Multi-jet trigger} (\geqslant 4 \mbox{ jets}) \\ & \mbox{$\mathfrak{p}_T^{jet}>80$ GeV \& $|\eta|<1.4$} \\ & \mbox{$\mathfrak{p}_T(4^{th}\ jet)>max(0.3\times m_{sgluon}+30)$} \\ & \mbox{$(|\Delta R_{pair1}-1|+|\Delta R_{pair2}-1|)<1.6$} \\ & \mbox{$Scattering angle}\ |cos(*\theta)|<0.5$} \\ & \mbox{$(|m_1-m_2|/|m_1+m_2|)<0.15$} \\ \end{array}$
- BG estimated in a data-driven way.

Sgluon mass [GeV]	p ^{min} [GeV]	Data	ABCD
150	80	102162	$101100 \pm 800 \pm 2000$
200	90	55194	$54500 \pm 600 \pm 1100$
250	105	23404	$22500 \pm 340 \pm 500$
300	120	11082	$10640 \pm 230 \pm 210$
350	135	5571	$5330 \pm 180 \pm 110$

✓ For a mass of 150 GeV (350 GeV), a limit of 70 pb (10 pb) is obtained.

Please see Snezana Nektarijevic's talk for other sgluon searches: https://cds.cern.ch/record/1545582/files/ ATL-COM-PHYS-2013-583.pdf

Andres Florez (York U)

May 17, 2013 8 / 16

Long-Lived Particles:

Long-Lived Particles

- RPV scenarios: Life time proportional to $\lambda^{-2}, \lambda'^{-2}, \lambda''^{-2}$ If λ is small, the LSP can be a long lived particle.
- R-parity conserving scenarios (RPC):
 - Chargino in Anomaly-Mediated SUSY Breaking (AMSB) model.
 - Phadron in Split SUSY model.
 - ILSP stau in Gauge-Mediated SUSY Breaking (GMSB) model.

Non-pointing Photons (submitted to PRD) http://arxiv.org/abs/1304.6310 NEW

Results are presented in the context of **SPS8** (Snowmass Points and Slopes parameter set 8): describes a set of minimal GMSB models with $\tilde{\chi}_1^0$ (long-lived) as the NLSP. The SUSY breaking scale is denoted by Λ .

- LSP: Gravitino (\tilde{G})
- **2** NLSP: $\tilde{\chi}_1^0 \rightarrow \gamma + \tilde{G}$, with γ being produced after a finite delay and with a flight direction that does not point back to the primary vertex.
- SUSY production dominated by electroweak pair production of gauginos, and in particular of $\tilde{\chi}_2^0 \tilde{\chi}_1^\pm$ and $\tilde{\chi}_1^+ \tilde{\chi}_1^-$
- γ flight direction: measured from centroids of EM showers in the first and second layers of the calorimeter.
- $\checkmark z_{DCA} = z_{\gamma} z_{PV} \text{ [mm]}$
 - Variable used as a measure of the degree of non-pointing of the γ
 - OCA: Distance of Closest Approach

Andres Florez (York U)

Non-pointing Photons

Event Selection

- **1** Double γ trigger & PV with \geq 5 tracks.
- 2 $E_T(\gamma) > 50 \text{ GeV } \& |\eta| < 2.37$
- 3 Isolation < 5 GeV ($\Delta R = 0.2$)
- $\geq 1 \gamma$ passing tight ID & $\geq 1 \gamma$ passing loose ID. (only loose γ is examined)
- $I E_T^{miss} > 75 \text{ GeV}$

BG estimated from data

- Prompt γ and electrons: Z_{DCA} obtained from Z → ee events (tag & probe)
- (2) jets: template from SR selections but $E_T^{miss} < 20$ GeV.
- ✓ For $\Lambda = 70$ TeV (160) TeV, NLSP ($\tilde{\chi}_1^0$) life times between 0.25 and 50.7 ns (2.7 ns) are excluded at 95% CL.

Andres Florez (York U)

May 17, 2013 11 / 16

Displaced Vertex (PLB) http://www.sciencedirect.com/science/article/pii/S037026931300083X

- Search for high mass particles with a displaced vertex with ≥ 5 tracks and a muon.
- A dedicated tracker algorithm was developed to increase the efficiency on the identification of secondary tracks.

BG:
$$(4 \pm 60) * 10^{-3}$$
, Data : 0

Andres Florez (York U)

LHCP - Barcelona

Disappearing Tracks: AMSB (JHEP) http://link.springer.com/article/10.1007/JHEP01(2013)131

- LSP = Wino, $\Delta m_{\tilde{\chi}_1}$ can be small (\approx 160 MeV).
- $\tilde{\chi}_1$ could have a measurable lifetime: $c\tau \approx O(0.1ns).$
- Look for production processes:
 - $\begin{array}{ll} \bullet & pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0 + jet \\ \bullet & pp \rightarrow \tilde{\chi}_1^{-} \tilde{\chi}_1^{+} + jet \end{array}$
- Analysis Strategy: look for charginos decaying in the inner TRT detector volume, leaving a small number of hits in the outer TRT modules.
- Main BGs:
 - High p_T charged hadrons (80%)
 - Low p_T tracks with large bremsstrahlung radiation.

Andres Florez (York U)

Disappearing Tracks: AMSB

- The BG estimation and the signal extraction is done in two steps:
 - Derive the BG track p_T shapes from control regions.
 - Perform a "signal + BG" template fit to candidate tracks.

- ✓ No excess over the standard model BG is observed.
- ✓ For $\Delta m \approx 160(170)$ MeV (most probable in AMSB), $m_{\tilde{\chi}_1^{\pm}}$ up to 103(85) GeV is excluded.

Stable Massive Particles (PLB) http://www.sciencedirect.com/science/article/pii/S0370269313001445

Analysis Characteristics

- Search for long lived sleptons, squarks and gluinos (β < 1).
- The search includes different signatures of sleptons and R-hadrons.
- Mass (m) estimated as $m = \frac{p}{\gamma\beta}$.

Heavy Long-Lived Sleptons

R-hadrons Search

- R-hadrons are composites of a gluino or squark with SM partons.
- R-hadrons can change their electric charge as they traverse the detector!
- Three different analyses: full detector, MS-agnostic, inner detector only.

- ATLAS has covered a broad set of analyses on RPV and long-lived particles searches.
- These analyses require a deep understanding of the detector, which make them interesting, non-conventional and very challenging!
- No excess over the SM background has been observed.
- ATLAS has set competitive limits of exclusion on several models.

 More results with the 2012 data are coming soon, with several improvements in the analysis techniques, data-driven methods to estimate BGs and inclusion of new models in our studies, so stay tuned!

ELE NOR

- 4 E

Andres Florez (York U)

LHCP - Barcelona

May 17, 2013 17 / 16

- 本間 と 本語 と 本語 と

三日 のへの

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: LHCP 2013

G

G

201212 gen. soun

PPV

Other Ň

Model	e, μ, τ, γ	Jets	ET	Ldt [fb-1	Mass limit	,	Reference
CUCOA CARCON		0.0 inte	Ver				171 40 0005 0010 017
CLCD A CMCCM		210 juis	Yes	20.5	9.9	1.8 IEV mightim(g)	ATLAS CONF-2013-047
CLCD A CMCCM	τe, μ	4 juis	Yes	0.0	.g. 1.24 lev	m(qum(g)	ATLAS-CONF-2012-104
SUGRACINGON		7-10 jets	Yes	20.5	9 1.1 lev	any m(q)	ATLAS CONF-2013-054
$q \rightarrow q\chi_{1}$	0	2-6 jets	105	20.5	q 740 GeV	m(25) = 0 GeV	ATD43/CONF/2013/04/
3. 9→99X1	0	2-6 jets	res	20.3	g 1.3 Te	V m(χ ^a ₂) = 0 GeV	ATLAS-CONF-2013-047
luino med. χ° (g→qឳχ°)	1 e, µ	2-4 jets	Yes	4.7	g 900 GeV	$m(\chi_1^0) < 200 \text{ GeV}, m(\chi^-) = 0.5(m(\chi_1^0)+m(g))$	1208.4688
3→dddd((())X ⁴ ,X ⁴	2 e, µ (SS)	3 jets	Yes	20.7	ğ 1.1 TeV	m(χ ⁰ ₁) < 650 GeV	ATLAS-CONF-2013-007
MSB ([NLSP)	2 e, µ	2-4 jets	Yes	4.7	g 1.24 TeV	tianβ < 15	1208.4688
MSB (I NLSP)	1-2 τ	0-2 jets	Yes	20.7	ğ 1.41	FeV tan/3 > 18	ATLAS-CONF-2013-026
GM (bino NLSP)	2γ	0	Yes	4.8	g 1.07 TeV	m($\tilde{\chi}_{1}^{0}$) > 50 GeV	1209.0753
GM (wino NLSP)	1 e, μ + γ	0	Yes	4.8	ĝ 619 GeV	m(χ ⁺ ₁) > 50 GeV	ATLAS-CONF-2012-144
GM (higgsino-bino NLSP)	γ	1 b	Yes	4.8	ĝ 900 GeV	m(χ̃_1^0) > 220 GeV	1211.1167
GM (higgsino NLSP)	2 e, µ (Z)	0-3 jets	Yes	5.8	ĝ 690 GeV	m(H) > 200 GeV	ATLAS-CONF-2012-152
ravitino LSP	0	mono-jet	Yes	10.5	F ¹² scale 645 GeV	$m(\tilde{G}) > 10^{-6} \text{ eV}$	ATLAS-CONF-2012-147
→bbχ ⁰	0	3 b	Yes	12.8	ĝ 1.24 TeV	m(χ ² ₁) < 200 GeV	ATLAS-CONF-2012-145
$\rightarrow t t \chi_1^0$	2 e, µ (SS)	0-3 b	No	20.7	ĝ 900 GeV	m(χ̃ ⁰ ₁) < 500 GeV	ATLAS-CONF-2013-007
$\rightarrow t t \chi_1^0$	0	7-10 jets	Yes	20.3	ĝ 1.14 TeV	m(χ̃ ⁰ ₁) <200 GeV	ATLAS-CONF-2013-054
$\rightarrow t t \tilde{\chi}_1^0$	0	3 b	Yes	12.8	ĝ 1.15 TeV	m(χ_1^0) < 200 GeV	ATLAS-CONF-2012-145
b. b.→by ⁰	0	2 b	Yes	20.1	b. 100-630 GeV	m(x ²) < 100 GeV	ATLAS-CONF-2013-053
b. b+ty	2 e. u (SS)	0-3 b	Yes	20.7	b. 430 GeV	$m(\overline{y}_{1}^{2}) = 2 m(\overline{y}_{1}^{2})$	ATLAS-CONF-2013-007
(light), t_→bỹ ⁴	1-2 e. u	1-2 b	Yes	4.7	1. 167 GeV	m(y?) = 55 GeV	1208.4305. 1209.2102
(light), t→Wby?	2 e. u	0-2 lets	Yes	20.3	7. 220 GeV	$m(\bar{x}_{1}^{2}) = m(\bar{t}_{1}) - m(W) - 50 \text{ GeV}, m(\bar{t}_{2}) << m(\bar{x}_{1}^{2})$	ATLAS-CONF-2013-048
(medium) t-by*	20.0	0.2 lets	Yes	20.3	150-440 GeV	m(x ²) = 0 GeV m(t,), m(x ²) = 10 GeV	ATLAS-CONE-2013-048
(medium) tby*		2 h	Yes	20.1	150-590 GeV	m(x ²) < 200 GeV m(x ²) m(x ²) = 6 GeV	ATLAS-CONE-2013-053
(beaw) I-ty	10.0	1.b	Yes	20.7	200-610 GeV	m(x ⁰) = 0 GeV	ATLAS-CONE-2013-037
(heave) I tr		2 h	Yes	20.5	220.660 GoV	m(2 ⁰) = 0 GeV	ATLAS-CONE-2013-024
(natural GMSB)	2 0 11 (7)	1.b	Yes	20.7	500 GeV	m(5 ^e) > 160 GeV	ATLAS-CONE-2013-025
1	2 0 11 (7)	1.5	Vor	20.7	500 001	mb) - m(2) + 180 Celd	ATLAS.CONE.2012.025
2 C					*		
RILR, I-HX1	2 e, µ	0	Yes	20.3	85-315 GeV	$m(\chi_1^n) = 0 \text{ GeV}$	ATLAS-CONF-2013-049
$\chi_1 \chi_1^* \rightarrow lv (lv)$	2 e, µ	0	Yes	20.3	χ ₁ 125-450 GeV	$m(\chi_1^0) = 0 \text{ GeV}, m(l, \bar{v}) = 0.5(m(\chi_1^0) + m(\chi_1^0))$	ATLAS-CONF-2013-049
X, X, ->tv(tv)	2τ	0	Yes	20.7	χ [*] 180-330 GeV	$m(\tilde{\chi}_{1}^{+}) = 0 \text{ GeV}, m(\tau, \bar{\tau}) = 0.5(m(\tilde{\chi}_{1}^{+}) + m(\tilde{\chi}_{1}^{0}))$	ATLAS-CONF-2013-028
$\chi_2^0 \rightarrow l_L v l_L l(v v), lv l_L l(v v)$	3 e, µ	0	Yes	20.7	x ₁ ⁴ , x ₂ ⁰ 600 GeV	$m(\chi_1^+) = m(\chi_2^+), m(\chi_1^+) = 0, m(l_V) = 0.5(m(\chi_1^+) + m(\chi_1^+))$	ATLAS-CONF-2013-035
$(\tilde{\chi}_2^{\ 0} \rightarrow W^* \tilde{\chi}_1^0 Z^*, \tilde{\chi}_1^0)$	3 e, µ	0	Yes	20.7	- χ̃ [±] ₁ , χ̃ ⁰ ₂ 315 GeV	$m(\chi_1^+) = m(\chi_2^0), m(\chi_1^0) = 0$, sleptons decoupled	ATLAS-CONF-2013-035
irect $\tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}$ prod., long-lived $\tilde{\chi}_{1}^{*}$	0	1 jet	Yes	4.7	220 GeV	$1 < \tau(\widetilde{\chi}_1^+) < 10 \text{ ms}$	1210.2852
table g, R-hadrons	0-2 e, µ	0	Yes	4.7	ğ 985 GeV		1211.1597
MSB, stable t, low ß	2 e, µ	0	Yes	4.7	T 300 GeV	5 < tanβ < 20	1211.1597
MSB, $\chi_1^0 \rightarrow \gamma G \text{Jong-lived} \chi_1^0$	2γ	0	Yes	4.7	χ̃ ⁰ 230 GeV	$0.4 < \tau(\chi_1^0) < 2 \text{ ns}$	1304.6310
$^{2} \rightarrow qq\mu (RPV)$	1 e, µ	0	Yes	4.4	q 700 GeV	1 mm < ct < 1 m, g decoupled	1210.7451
FV pp→ữ t+X, ữ t→e+μ	2 e, µ	0		4.6	Ÿ. 1.	61 TeV λ ₃₁₁ =0.10, λ ₁₃₃ =0.05	1212.1272
FV pp→ν τ+X, ν τ→e(μ)+τ	1 e,μ + τ	0		4.6	V . 1.1 TeV	λ ₂₁₁ =0.10, λ ₁₀₂₀₃ =0.05	1212.1272
linear RPV CMSSM	1 e, µ	7 jets	Yes	4.7	ĝ. ĝ 1.2 TeV	$m(\bar{q}) = m(\bar{q}), c_{\tau_{LTP}} < 1 mm$	ATLAS-CONF-2012-140
$\widetilde{\chi}_1 \widetilde{\chi}_1^* \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow eev_peµv_e$	4 e, µ	0	Yes	20.7	χ̃ ⁴ 760 GeV	$m(\chi_1^0) > 300 \text{ GeV}, \lambda_{101} > 0$	ATLAS-CONF-2013-036
$\tilde{\chi}_{1} \tilde{\chi}_{1}^{*} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow T V_{0}, e V_{1}$	3 e, μ + τ	0	Yes	20.7	2 350 GeV	$m(\tilde{\chi}_{1}^{0}) > 80 \text{ GeV}, \lambda_{123} > 0$	ATLAS-CONF-2013-036
→ qqq	0	6 jets		4.6	G 666 GeV		1210.4813
→t,t, t,-→bs	2 e, µ (SS)	0-3 b	Yes	20.7	g 880 GeV		ATLAS-CONF-2013-007
calar gluon	0	4 jets		4.6	sgluon 100-287 GeV	incl. limit from 1110.2693	1210.4826
IMP interaction (D5, Dirac χ)	0	mono-jet	Yes	10.5	M* scale 704 GeV	m(g) < 80 GeV, limit of < 687 GeV for D8	ATLAS-CONF-2012-147
-		_	-	_	L		
1s = 7 Te	V (s =	8 TeV	1s = 8	TeV	10 ⁻¹ 1	Mana anala (Ta)/	
full dat	a partia	data	full d	ata		iviass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits auoted are observed minus 1 or theoretical signal cross section uncertainty.

Andres Florez (York U)

LHCP - Barcelona

ATLAS Preliminary

Ldt = (4.4 - 20.7) fb⁻¹ (s = 7, 8 TeV

4 Lepton Search

Search For Heavy Resonances Decaying to $e - \mu$ (PLB) http://arxiv.org/abs/1212.1272

$$L_{(LVF)} = \frac{1}{2}\lambda_{ijk}L_{i}L_{j}e_{k} + \lambda_{ijk}^{'}L_{i}Q_{j}d_{k}$$

- possible resonance $\tilde{\nu}_{\tau}$
- Event selection
 - Single lepton trigger
 *p*_T(*e*, μ) > 25*GeV Q*(*e*) * *Q*(μ) < 0
 Δφ > 2.7
 - Scan in $Mass(e, \mu)$

Andres Florez (York U)

LHCP - Barcelona

May 17, 2013 20 / 16

Search for heavy resonances decaying to $e - \tau_{had}$

Andres Florez (York U)

LHCP - Barcelona

May 17, 2013 21 / 16

1500

Search for heavy resonances decaying to $\mu - au_{had}$

Pair of 3 Jet Resonance Search (JHEP)

- Search for RPV decays of gluino into three quarks.
- Two complementary methods are used:
 - Resolve all six jets (Resolved Analysis): Optimized for high-mass gluinos.
 - 2 Exploit the collimation of the decay products (Boosted analysis).

Resolved Analysis

Pair of 3 Jet Resonance Search: Boosted Analysis

- Search for gluinos are produced with large boost $p_T > 2 \times m_{\tilde{g}}$.
- Highly collimated jets, each containing 3 sub-jets.
- Search for large jets: R = 1.
- Use k_T algorithm to fit jet, requiring N sub-jets are found.

$m_{\tilde{g}}$ excluded up to 255 GeV

SS+Jets+ E_T^{miss} Analysis (RPV)

Andres Florez (York U)

May 17, 2013 25 / 16

Pair of 2 Jet Resonance (gluon) Search

Displaced Vertex (PLB) http://www.sciencedirect.com/science/article/pii/S037026931300083X

- If a particle has a lifetime of the order of a few nanoseconds, it can decay inside the tracking system producing a displaced-secondary vertex.
- Search for high mass particles with a displaced vertex with ≥ 5 tracks and a muon.
- The standard ATLAS tracking is optimized for tracks coming from the primary interaction point.

• A dedicated tracker algorithm was developed to increase the efficiency on the identification of secondary tracks.

Andres Florez (York U)

May 17, 2013 27 / 16

Displaced Vertex

- Potential background sources:
 - Is and the set of t
 - High-mass tail of distributions of real vertices from hadronic interactions with gas molecules. We veto vertices reconstructed anywhere that there is detector material.
 - 3 Total background estimated in the signal region is: $(4 \pm 60) * 10^{-3}$ (zero events observed in data).

Displaced Vertex

- Muon and Event Selection Criteria:
 - The PV with the highest sum of p²_T of the tracks associated to it is required to have at least five tracks and a z position in the range |Z_{PV}| < 200 mm.</p>
 - 2 Events with two back to back muons are rejected.
 - 3 Only select muons with $p_T > 50$ GeV and $|\eta| < 1.05$ reconstructed in both MS and ID.
 - $|d_0| > 1.5$ mm.
 - **(3)** ID track associated to reconstructed muon, must have $N_{SCT}^{hits} > 6 \& N_{TRT}^{hits}(\eta \ dependent) > X.$
- Tracks Selection Criteria to Reconstruct DV
 - Select only high quality tracks.

3 $|d_0| > 2.0 \text{ mm}$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Displaced Vertex

- Modifications to the ATLAS Tracking Algorithm:
 - Standard algorithms assume that tracks originate from close to the PV.
 - O To counter this problem, the silicon-seeded tracking algorithm is re-run with looser requirements on the radial and z impact parameters, and on the number of detector hits.
 - § p_T of tracks is required to be 1 GeV (400 MeV for standard algorithm).
- DVs are sought with the selected tracks:
 - Ind two-track seed vertices from all pairs of tracks.
 - 3 Keep the vertices that have that have a vertex fit χ^2 of less than 5.0 per degree of freedom.
 - Apply strict selection criteria to avoid that tracks associated with more than one vertex.
 - To minimize BG from PVs, the transverse distance must be $\sqrt{(x_{DV} x_{PV})^2 + (y_{DV} y_{PV})^2} > 4$ mm.
 - $I N_{DV}^{tracks} > 5 \& m_{DV} > 10 \text{ GeV} (suppresses BGs)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Displaced Vertex

 The event selection efficiency as a function of cτ for the three signal samples.

• The efficiency as a function of rDV and zDV for vertices in the signal MC sample MH.

Andres Florez (York U)

LHCP - Barcelona

May 17, 2013 31 / 16

-

Disappearing Tracks: AMSB

- *p_T* distribution of the hadron-track control sample.
- The significance of the residuals between the data and the fit is shown at the bottom.
- *p_T* distribution of the electron-track control sample.
- The significance of the residuals between the data and the fit is shown at the bottom.

Stable Massive Particles (PLB) http://www.sciencedirect.com/science/article/pii/S0370269313001445

- We search for long lived sleptons, squarks and gluinos (β < 1).
- Our search includes different signatures of sleptons and R-hadrons.
- The mass (m) of these particles can be estimated as $m = \frac{p}{\gamma\beta}$ where:
 - *p* is taken from track
 - β is measured from ToF (Calo+MDT+RPC)
 - $\beta \gamma$ is measured from pixels using an empirical Bethe-Bloch-like function: $\mathcal{M}_{\frac{dE}{dX}(\beta\gamma)} = \frac{p_1}{\beta^{p_3}} ln(1 + (p_2\beta\gamma)^{p_5}) - p_4$
- The core of this analysis consists of measuring as accurately as possible the velocity of particles traversing the detector.

Andres Florez (York U)

LHCP - Barcelona

May 17, 2013 33 / 16

SMP Search

May 17, 2013 34 / 16

I= nan

-

Stable Massive Particles (PLB) http://www.sciencedirect.com/science/article/pii/S0370269313001445

LHCP - Barcelona

Analysis Characteristics

- Search for long lived sleptons, squarks and gluinos (β < 1).</p>
- The search includes different signatures of sleptons and R-hadrons.
- 3 Mass (m) estimated as $m = \frac{p}{\gamma\beta}$.

• Heavy Long-Lived Sleptons

- Expect two sleptons per event.
- Main BG source are high p_T muons with mis-measured β.

- No excess over the SM background is observed.
- ✓ Long-lived staus (GMSB) excluded up to 300 GeV for $5 < tan\beta < 20$.
- ✓ Directly produced sleptons excluded up to 278 GeV.

Heavy Long-Lived R-Hadrons

- R-hadrons are composites of a gluino or squark with SM partons.
- Their energy deposits in the calorimeter may be small.
- R-hadrons can change their electric charge as they traverse the detector!
- Currently we have 3 different analyses to cover the lack of knowledge of the R-hadrons interaction with the detector:
 - Full detector.
 - Ø MS-agnostic (ignore muon detectors)
 - Inner detector only

 $m_{\tilde{g}}$ excluded up to 985 GeV.

