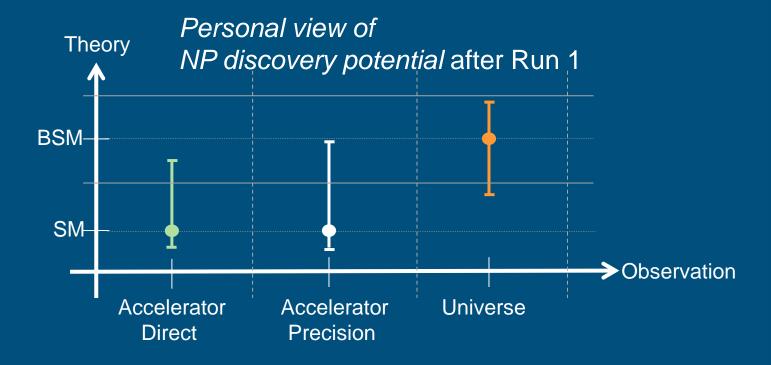


LHCb Upgrade(s)

- up to 2028 -

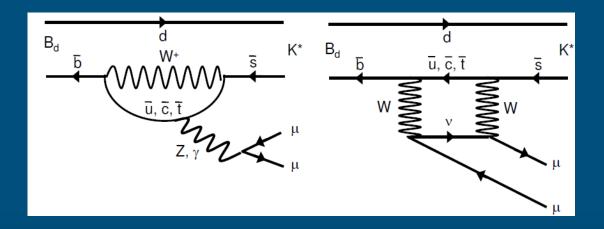
R. Jacobsson

on behalf of the LHCb Collaboration


Outline

- Introduction
- LHCb objectives and observables
- Current status and foundation for the upgrade
- Current limitations and solutions
- LHCb upgrade plans, prospects and schedule
- Conclusions

Opening Scenario for 2015 and Beyond


- Precision measurements likely to have the largest discovery potential for new physics
 - Higgs (EW) precision physics (mainly ATLAS and CMS)
 - Flavour precision physics (mainly LHCb, and soon joined by Belle II)
 - Continued direct searches for on-shell production of new particles (mainly ATLAS and CMS)
- → if observed directly, precision measurements allow characterizing the role of the new physics ,...or, ...
- if not, virtual effects may be the only way to set the scale of BSM physics

In Praise of Precision Measurements

- With the success of virtual corrections in SM, difficult to imagine that new particles which have "sizeable" couplings to SM particles would not be seen in precision measurements...
- → LHCb focus on measuring *indirect* effects of New Physics in CP violation and rare decays using FCNC processes mediated by box and penguin diagrams
 - Strongly suppressed processes allow distinguishing NP sources
 - Virtual effects allow probing energies much higher than the E_{cms} of the LHC
 - → Complementary to the direct searches by Atlas and CMS
- New Physics may enter differently in boxes and in penguin contributions
 - → Aim for access to "all" modes and with sufficient precision to distinguish the different contributions

LHCb Objective and Observables

- Beauty and charm flavour sector contains a very large repertoire of decays and topologies
 - Aim at exploring all possible observables sensitive to New Physics

→ Phases: CP violating asymmetries

→ Amplitudes (masses and couplings): Branching ratios and oscillation frequencies

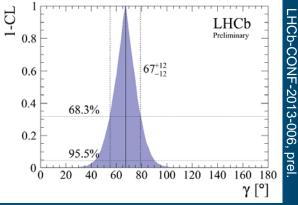
→ Helicity structure: Angular distributions

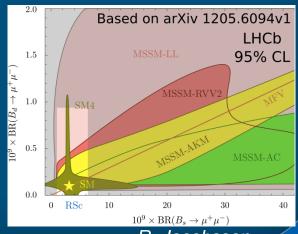
• As compared to direct searches, these observables are relatively inclusive and less model dependent

- Aim to reach experimental sensitivities which are comparable or better than theoretical uncertainties
 - Precision of many measurements not expected to be limited by systematics
 - Need 10-fold our statistics
 - In particular we need to improve the access to the hadronic modes
 - →Increase efficiency of hadronic channels by factor >2
 - → Increase luminosity
 - → Also improve output bandwidth and lower p_T to increase sensitivity for charm
 - → Gives access to new modes and observables as well
- Large benefit from flexible trigger in extending physics program in Run 1
 - → Most important aspect of the upgrade lies in the flexibility to explore detector operation and physics goals beyond design

LHCb Objectives and Observables

LHCb


Examples of target channels in the upgrade


- CP violation B
 - B_s mixing phase ϕ_s from B_s $\rightarrow J/\psi \phi$, B_s $\rightarrow J/\psi f^0$, box diagram
 - $B_s \rightarrow \phi \phi$, gluonic penguin
 - · CP violation and amplitude
 - b $\rightarrow s\overline{s}s$ in SM has cancellation of weak phases in mixing and decay yields $\phi_s^{sss} = 0$
 - $B_d \rightarrow \phi K_S$, $B_d \rightarrow \eta' K_S$, gluonic penguin
 - γ from trees (B_d \rightarrow D^(*)K^(*), B_s \rightarrow D_sK)
 - γ from loops (penguins) (B \rightarrow h⁺h⁻, B⁺ \rightarrow K⁺ π ⁻ π ⁻)
- Rare decays
 - FCNC in penguins and boxes of B_{s d} → μμ decay and ratio
 - Sensitive to SUSY with additional scalars
 - Helicity structure in B_d→K*μμ, B_s→φμμ with angular analysis
 - · Sufficient precision in additional observables with upgrade
 - Sensitive to SUSY at small tan β
 - Helicity structure B_s→φγ
 - Sensitive to chirality flips in the loop
 - B+ $\rightarrow \pi + \mu^- \mu^+$, b \rightarrow d electroweak penguin
 - Ratio to B⁺ \rightarrow K⁺ μ ⁻ μ + (Δm_d / Δm_s), and m_{uu} spectrum
- Charm physics
 - · CP asymmetries and mixing in charm decays

"Large Hadron Collider Physics", Barcelona, Spain 13 – 18 May 2013

- Other e.g.
 - sin²θ_{eff} lept from measuring A_{FB} of leptons in Z⁰-decays
 - cLFV $\tau^- \rightarrow \mu^- \mu^+ \mu^-$
 - BR($\tau^- \to \mu^- \mu^+ \mu^-$) < 8.0x10⁻⁸ (90% CL) (LHCb 2013-062)

¹ + CDF 9.6 fb ¹ + DØ 8 fb ¹ + ATLAS

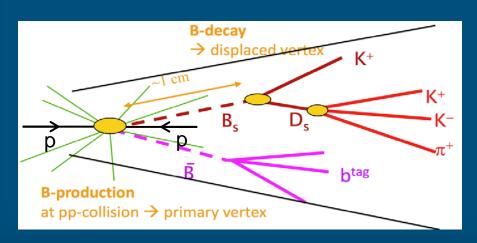
Physics Prospects <u>up to</u> LHCb Upgrade

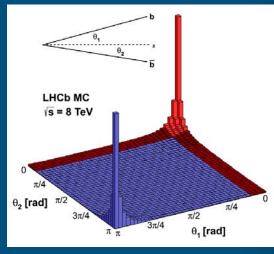
- Currently 3.2 fb⁻¹ of integrated luminosity
- Expect ~4-5 fb⁻¹ in 2015 2018 (Run 2)
 - → Expected precision in 2018 for representative physics modes:

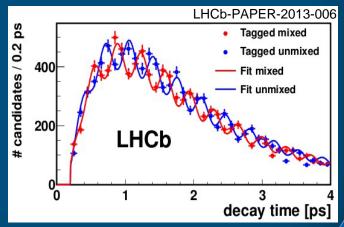
Type	Observable	Current	LHCb	Theory
		precision	2018	uncertainty
B_s^0 mixing	$2\beta_s \ (B_s^0 \to J/\psi \ \phi)$	0.10 [9]	0.025	~ 0.003
	$2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$	0.17 [10]	0.045	~ 0.01
	$A_{ m fs}(B^0_s)$	$6.4 \times 10^{-3} [18]$	0.6×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	< 0.02
	$2\beta^{\mathrm{eff}}(B^0 \to \phi K_S^0)$	0.17 [18]	0.30	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	_	0.09	< 0.01
currents	$ au^{ ext{eff}}(B^0_s o\phi\gamma)/ au_{B^0_s}$	_	5 %	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	6%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{\rm GeV^2/c^4})$	0.25 [15]	0.08	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25%[16]	8 %	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 o \mu^+\mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 o \mu^+\mu^-)/\mathcal{B}(B^0_s o \mu^+\mu^-)$	_	$\sim 100\%$	$\sim 5\%$
Unitarity	$\gamma (B \to D^{(*)}K^{(*)})$	$\sim 10-12^{\circ} [19, 20]$	4°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$		11°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	negligible
Charm	A_{Γ}	$2.3 \times 10^{-3} [18]$	0.40×10^{-3}	_
<i>CP</i> violation	ΔA_{CP}	$2.1 \times 10^{-3} [5]$	0.65×10^{-3}	

Key Features of LHCb

Large signal cross-sections

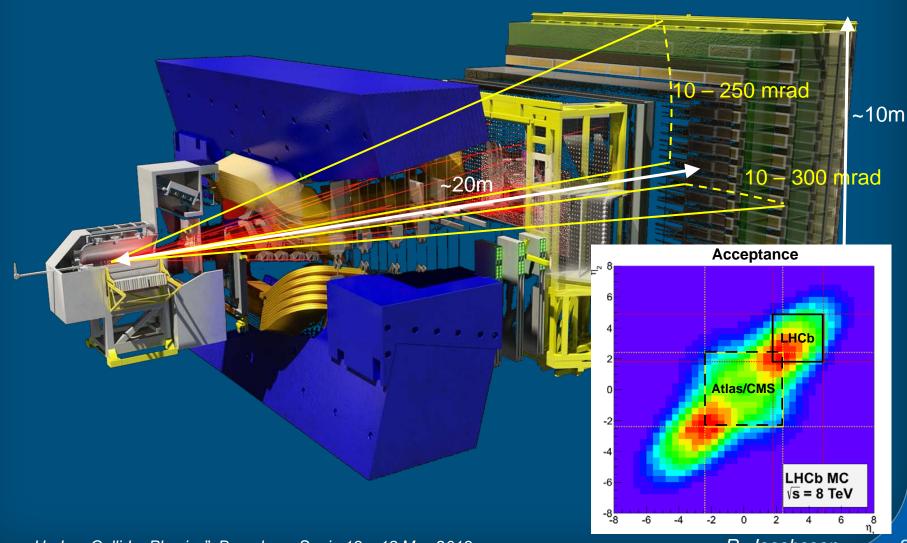

- >100 000 \rightarrow 1 000 000 bb pairs per second at LHCb interaction point
- Access to all quasi-stable b-flavored hadrons B_u (~40%), $\overline{B_d}$ (~40%), B_s (~10%), and $\overline{B_c}$, and \overline{B} -baryons Λ_b (~10%), ... (arXiv:1111.2357v2, arXiv:1301.5286)
- cc production 20x more
- The initial state partons have different longitudinal momentum fraction


ullet The final state $bar{b}$ / $car{c}$ pair are boosted


- → The B / D hadrons appear in the same hemisphere
- → Very good proper time resolution

Flavor tagging

- Same side, uses π or K emitted together with signal B/D hadron
- Opposite side, detects flavor of partner B / D hadron from decay



LHCb Detector

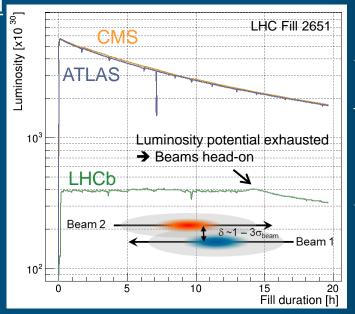
Covers ~4% of the solid angle, but captures ~40% of the heavy quark production cross-section

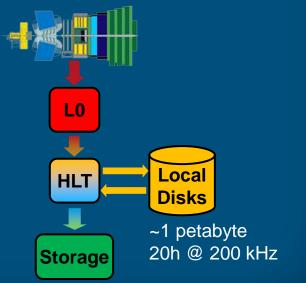
• Acceptance $2 < \eta < 5$ with entire detector

Operational Novelties in Run 1

Operational developments to maximize LHCb physics yield

1. Luminosity control

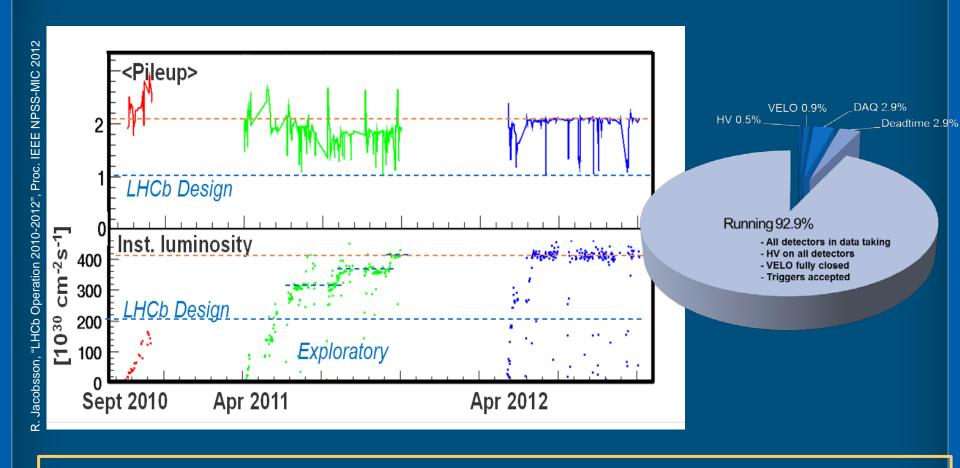

- Stable luminosity (pileup) through-out fills / months
 - · Same trigger configuration
 - Stable detector performance and radiation effects
 - → Reduced systematics
 - →95% of the total integrated luminosity was recorded within 3% of the optimal luminosity 2011-2012


2. Deferred triggering in High-Level Trigger Farm

- Fraction of events written (~200 kHz) on local farm node disks and processed during inter-fill time
- → 20 25% increase in effective CPU capacity
- → Further developments in this area to improve further for Run 2

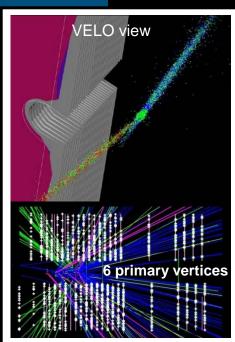
3. LHCb dipole polarity switches

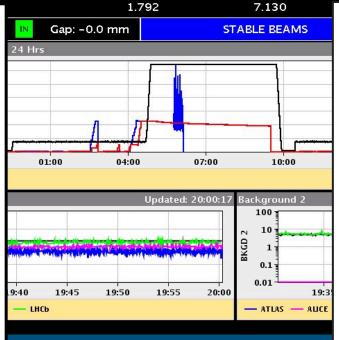
- → Systematics from residual detector asymmetries averaged out by flipping dipole polarity every 1-2 weeks
- → All of which will continue to be crucial in the future

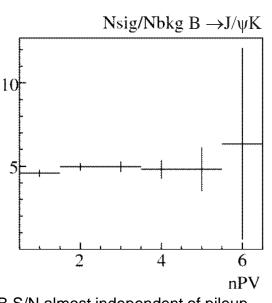


Running Conditions and Strategy 2010 - 2012 KH

- Current detector and trigger operated efficiently at 4 times the design pileup conditions (and higher!)
- Physics output rate stepped up from 2 kHz in 2010 to 5 kHz in 2012 (initial design output was 200 Hz...)

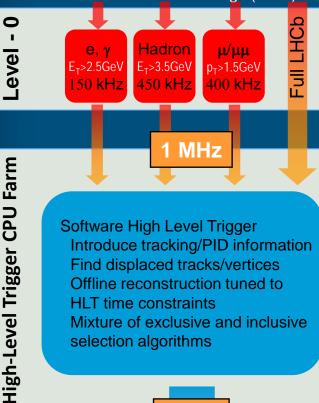





Upgrade "Deja-vu"

LHC web-based experiment overview display

04-Dec-2012 20:00:17	Fill #: 3374	Energy: 4000 GeV	I(B1): 2.03e+14	(B2): 2.01e+14
	ATLAS	ALICE	CMS	LHCb
Experiment Status	PHYSICS	PHYSICS	PHYSICS	Upgrade!
Instantaneous Lumi [(ub.s)^-1	5460.0	6.595	5604.2	999.1
BRAN Luminosity [(ub.s)^-1]	5494.5	4.272	5521.6	1123.1
Fill Luminosity (nb)^-1	27394.6	30.5	28708.4	2005.3
BKGD 1	0.723	0.982	2.195	1.615
BKGD 2	102.929	0.000	4.883	5.478


- B S/N almost independent of pileup D S/N shows some degradation vs pileup.
- → Demonstrated forward high precision tracking and particle ID even with pileup
- → Further demonstration of the concepts for the LHCb upgrade

Current Trigger Architecture

40 MHz

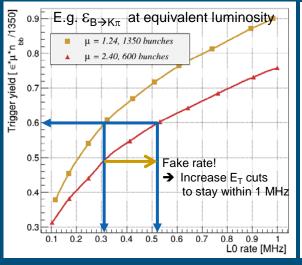
12 MHz of visible crossings (2012)

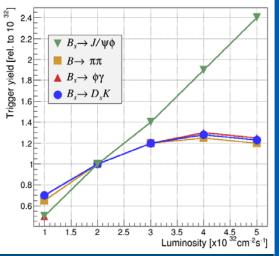
Software High Level Trigger Introduce tracking/PID information Find displaced tracks/vertices Offline reconstruction tuned to **HLT** time constraints Mixture of exclusive and inclusive selection algorithms

Storage Inclusive Topological 2 kHz

Incl./Excl. Charm 2 kHz

5 kHz

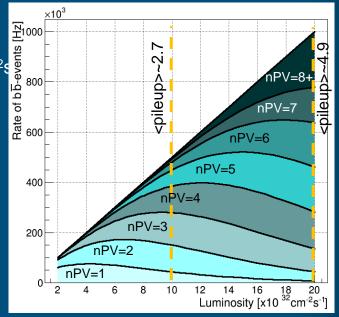

Muon and Dimuon 1 kHz


- Performances at 8 TeV in 2012 (L0 x HLT)
 - B decays with µµ:
- ε~90%
- B decays with hadrons:
- ε~30%

Charm decays:

- ε ~ 10 %
- → About half the interesting B decays are lost
- Limitation: FE readout time=900ns → max 1.1 MHz
 - Increase luminosity (=increase pileup)?

CERN/LHCC 2011-001

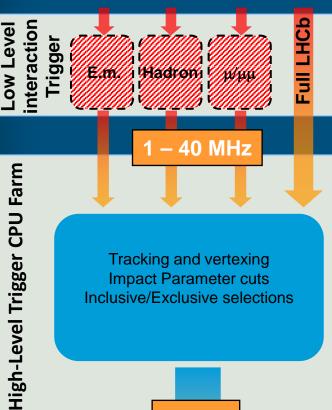

- \rightarrow Efficient selection requires IP and p_T of tracks
 - → Remove L0 bottle neck
 - → Readout detector at 40 MHz

Global LHCb Upgrade Strategy

Baseline

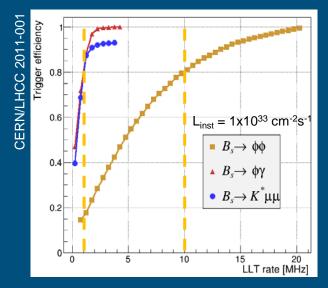
- 1. Full detector readout at 40 MHz up to CPU farm
- 2. Implement a fast high-level software trigger to select events based on their full topology
- 3. Improve sub-detectors
 - Geometry and granularity to allow fast full reconstruction
 - Allow increase instantaneous luminosity up to 2 x 10³³ cm⁻²s
 - Replacement due to radiation longevity (up to 100 fb⁻¹)
- 4. Final output bandwidth at ~20 kHz
- → Improve significantly trigger efficiencies for hadronic channels
- → Increase statistics for all channels

Consequences:


- → 40 MHz readout requires replacing all FE and BE electronics
- → Detector and readout upgrade must be done in one Technical Shutdown to be of benefit
- → Variable first level activity trigger (1-40 MHz) allows staging the capacity of the high-level trigger farm
- Starting point: 5 10 MHz event processing in farm at 1 x 10³³ cm⁻²s⁻¹

<u>Upgrade</u> Trigger Architecture

40 MHz



Inclusive/Exclusive selections

20 kHz

Storage Bandwidth sharing t.b.d.

- Variable Low Level interaction Trigger: 1 40 MHz
 - Lower E_T/p_T cuts of e, γ , hadron, μ

- Yield of hadronic B's gains up to ~13x compared to 2012
- Large gain for charm physics as well due to lower p_T
- Performance as function of HLT Farm CPU capacity
 - → Non-optimized upgrade example:

HLT farm	3 x 2012 6 x 2012		
LLT rate [MHz]	5.1	10.5 570 26	
HLT1 rate [kHz]	270	570	
HLT2 rate [kHz]	16	26	
LO x HLT efficiencies at	10 ³³ cm ⁻² s ⁻¹		
$B_s \rightarrow \phi \phi$	0.29	0.5	
$B_d \rightarrow K^* \mu \mu$	0.75	0.85	
$B_s \rightarrow \phi \gamma$	0.43	0.53	

Current LHCb Detector Performance

- Extremely good performance in the pileup environment
- Regular ageing scans with beam and calibrations vital

RICH Detectors K/π

Detector ageing under control

Muon System μ/h separation

Impact parameter resolution 20 µm **Proper time resolution** Momentum resolution Mass resolution RICH π -K separation

E.m. energy resolution

 $\Delta \tau = 45 \text{ fs for B}_s \rightarrow J/\psi \phi \text{ and B}_s \rightarrow D_s \pi$

 $\Delta p/p = 0.4 \% - 0.6 \% (5 \text{ GeV/c} - 100 \text{ GeV/c})$

 $\Delta m = 8 \text{ MeV/c}^2 \text{ for B} \rightarrow J/\psi X \text{ with constraint on J/}\psi$

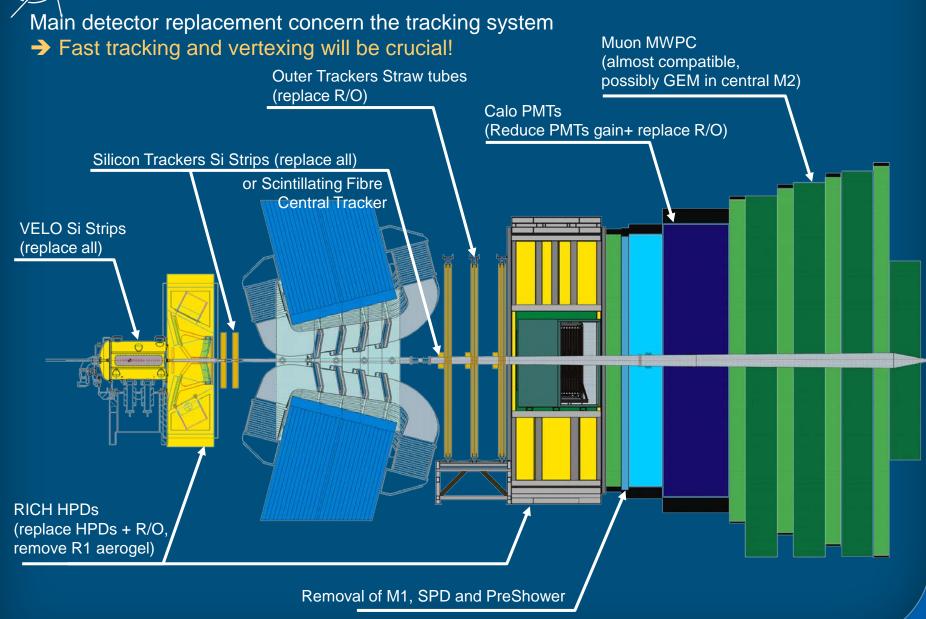
 $\varepsilon(K \rightarrow K) \sim 95 \%$, mis-ID $\varepsilon(\pi \rightarrow K) \sim 5 \%$

 $\varepsilon(\mu\rightarrow\mu)$ ~ 97 %, mis-ID $\varepsilon(\pi\rightarrow\mu)$ ~ 1-3 %

 $\Delta E/E = 1 \% \oplus 10 \%/\sqrt{E \text{ (GeV)}}$

Tracking System

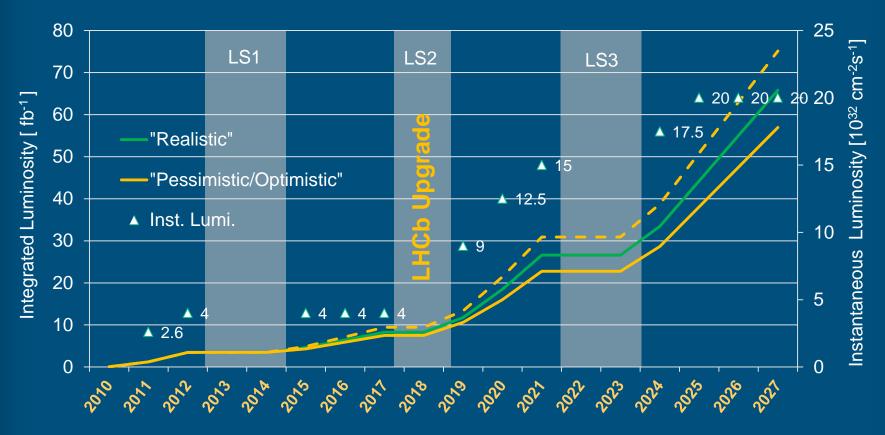
Muon ID


Calorimeters h/e/γ separation

Achieve at least same performance with upgraded detector at significantly higher pileup/occupancy

CERN

Sub-detector Upgrades – Baseline



Luminosity Projection

Luminosity projection based on experience in Run 1 and updated schedules:

 Clearly, again with the experience of 2010 – 2012, it's very likely the luminosity trend will look different

Upgrade Physics Prospects

- Expected precision based on statistics uncertainties
- Precision not expected to be limited by systematics in many analyses

Type	Observable	$\operatorname{Current}$	LHCb	$_{ m Upgrade}$	Theory
		precision	2018	(50fb^{-1})	uncertainty
B_s^0 mixing	$2\beta_s \ (B_s^0 \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	$6.4 \times 10^{-3} [18]$	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\mathrm{eff}}(B^0 \to \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	_	0.09	0.02	< 0.01
currents	$ au^{ ext{eff}}(B^0_s o\phi\gamma)/ au_{B^0_s}$	_	5%	1 %	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	6%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{\rm GeV^2/}c^4)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8 %	2.5%	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+\mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 o \mu^+\mu^-)/\mathcal{B}(B^0_s o \mu^+\mu^-)$	_	$\sim 100\%$	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma (B \to D^{(*)}K^{(*)})$	$\sim 10-12^{\circ} [19, 20]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi K_S^0)$	$0.8^{\circ} [18]$	0.6°	0.2°	negligible
Charm	A_{Γ}	$2.3 \times 10^{-3} [18]$	0.40×10^{-3}	0.07×10^{-3}	
<i>CP</i> violation	ΔA_{CP}	$2.1 \times 10^{-3} [5]$	0.65×10^{-3}	0.12×10^{-3}	_

→ But strength is the full software trigger to tune to any signature that may be popular in 2020!

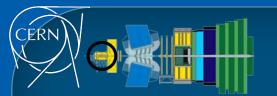
CERN/LHCC 2012-007

Upgrade Schedule

Overall generic milestones:

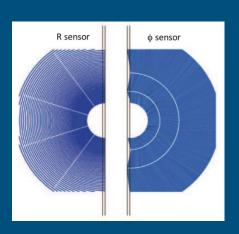
- in 2018/19: installation (18 months according to planning!)
- 2016-17: quality control & acceptance tests
- 2014-16: tendering & serial production
- Q3/Q4 2013: TDRs & prototype validation
- Q1/Q2 2013: technical reviews & choice of technologies
- ✓ 2012/2013: continue R&D towards technical choices
- ✓ 2012: "Framework TDR" submitted & endorsed
- ✓ June 2011: Lol submitted & encouraged to proceed to TDRs

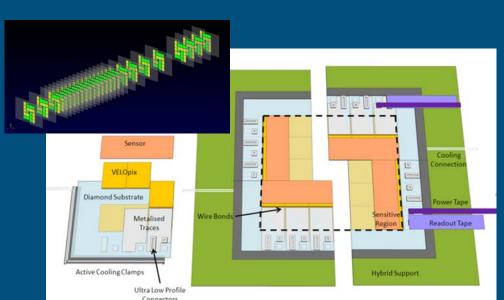
Conclusions

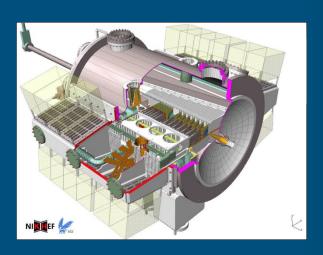

- LHCb has fought hard to earn the title of forward GPD
 - LHCb has demonstrated forward tracking and particle ID
 - A very rich physics program
 - Continuing on this the LHCb upgrade is largely a trigger upgrade with the ultimate flexibility!
- Folding in efficiencies and luminosity, upgrade get up to 20 times more hadronic events per second!
 - Challenging, but realistic
 - High pile-up data taken in 2010 and in 2012 very encouraging in view of a luminosity upgrade
 - Upgrade allows reaching theoretical uncertainties and opens the door to new observables
- The LHCb Upgrade has been fully approved by CERN

• In continuous search for new flavors!

EXTRA SLIDES

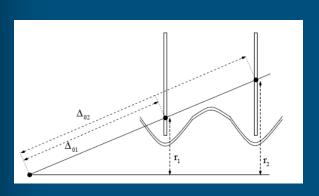


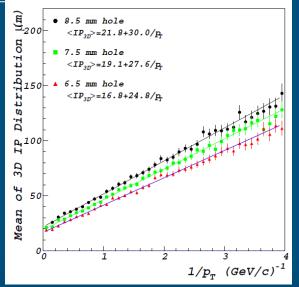

* VELO Upgrade



Two options still considered:

- 1. Microstrip sensors:
 - Similar to the existing VELO R and φ layout.
 - Finer pitch and segmentation to reduce occupancy, reduced thickness and inner radius.
- Pixel sensors:
 - High granularity eases pattern recognition.
 - R&D is focusing on planar silicon sensors 55 μm ×55 μm (256×256 pixels).
- → Project review for decision scheduled this month



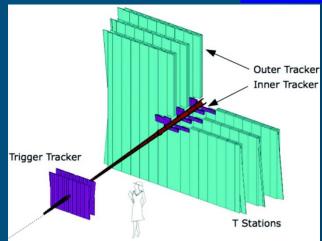

* VELO Upgrade

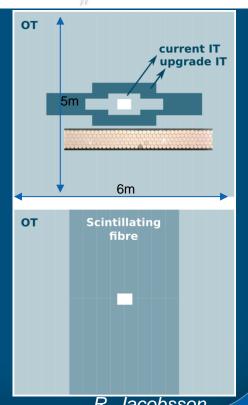
- Reduced sensor distance to beam and thinner RF foil
 - Inner radius of RF foil will be reduced from 5.5 mm to 3.5 mm to improve IP-resolution
 - The RF foil currently contributes with 80% of the material budget before r1 and r2 points
 - → Thinner foil from current 300µm to 200 µm by milling
- Cooling challenge
 - Close to beam: $\sim 5 \times 10^{15} \, \mathrm{n_{eq} cm^{-2}}$
 - Must cool to -10oC to -15oC to prevent thermal runaway

$$\sigma_{IP}^{2} = \frac{r_{1}^{2}}{\sqrt{2}p_{T}^{2}} \left[13.6 \frac{MeV}{c} \sqrt{\frac{x}{X_{0}}} (1 + 0.038 \ln \frac{x}{X_{0}}) \right]^{2} + \frac{\Delta_{02}^{2} \sigma_{1}^{2} + \Delta_{01}^{2} \sigma_{2}^{2}}{\Delta_{12}^{2}}$$

* Tracker Upgrades

- Redone with same Si-strip technology but improved geometry:
 - Better coverage by overlapping sensors
 - · Better vertical segmentation
 - Closer to beam pipe improve small-angle acceptance
 - Less material with thinner sensors (0.5 mm → 0.2-0.3 mm)
- → Aim at fast VELO-TT momentum measurement
- → Reduce fake VELO-IT/OT tracks




Silicon IT

- New silicon strip detector with larger coverage reducing geometry of OT in central region
- "n" coverage: IT/(IT+OT): 33% → 54%
- Si-IT size driven by OT performance cut whole in central OT to reduce effect of two high occupancy

Fibre Tracker

- Central tracker based on Scintillating Fibres with Silicon Photo-Multiplier (SiPM)
- Five layers of 2.5 m long scintillating fibres with 250 µm diameter.
- Need to keep the fibres straight to ~50 μm and flat to ~200 μm over 2.5m
- Expected performance: 60 100 µm spatial resolution.

