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 Precision measurements likely to have the largest discovery potential for new physics 
• Higgs (EW) precision physics (mainly ATLAS and CMS) 
• Flavour precision physics (mainly LHCb, and soon joined by Belle II) 
• Continued direct searches for on-shell production of new particles (mainly ATLAS and CMS) 

 

 if observed directly, precision measurements allow characterizing the role of the new physics 
,…or, … 

  if not, virtual effects may be the only way to set the scale of BSM physics 
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 With the success of virtual corrections in SM, difficult to imagine that new particles which 
have “sizeable” couplings to SM particles would not be seen in precision measurements… 

 
 

 LHCb focus on measuring indirect effects of New Physics in CP violation and rare decays 
using FCNC processes mediated by box and penguin diagrams 

• Strongly suppressed processes allow distinguishing NP sources 
• Virtual effects allow probing energies much higher than the Ecms of the LHC 
 Complementary to the direct searches by Atlas and CMS 
 
 

 New Physics may enter differently in boxes and in penguin contributions 
 Aim for access to “all” modes and with sufficient precision to distinguish the different contributions 
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 Beauty and charm flavour sector contains a very large repertoire of decays and  topologies 
• Aim at exploring all possible observables sensitive to New Physics 
  Phases:      CP violating asymmetries 
  Amplitudes (masses and couplings):  Branching ratios and oscillation frequencies 
  Helicity structure:   Angular distributions 

• As compared to direct searches, these observables are relatively inclusive and less model dependent 

 
 Aim to reach experimental sensitivities which are comparable or better than theoretical 

uncertainties 
• Precision of many measurements not expected to be limited by systematics 
• Need 10-fold our statistics 

• In particular we need to improve the access to the hadronic modes 
Increase efficiency of hadronic channels by factor >2 
 Increase luminosity 
Also improve output bandwidth and lower pT to increase sensitivity for charm 

 Gives access to new modes and observables as well 

 
 Large benefit from flexible trigger in extending physics program in Run 1 

 Most important aspect of the upgrade lies in the flexibility to explore detector operation and physics 
goals beyond design 
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Examples of target channels in the upgrade 
 

 CP violation B 
• Bs mixing phase φs  from Bs→J/ψ φ,  Bs→J/ψ f0, box diagram 
• Bs → φφ, gluonic penguin 

• CP violation and amplitude 

• b → sss in SM has cancellation of weak phases in mixing and decay yields φs
sss = 0 

• Bd→φKS , Bd→η’KS , gluonic penguin 
• γ from trees (Bd→ D(*)K(*), Bs→ DsK) 
• γ from loops (penguins) (B → h+h-, B+ → K+π+π−)  
 

 Rare decays 
• FCNC in penguins and boxes of Bs,d → µµ decay and ratio 

• Sensitive to SUSY with additional scalars 

• Helicity structure in Bd→K*µµ, Bs→φµµ with angular analysis 
• Sufficient precision in additional observables with upgrade  
• Sensitive to SUSY at small tan β 

• Helicity structure Bs→φγ 
• Sensitive to chirality flips in the loop 

• B+→π+µ−µ+, b→d electroweak penguin 
• Ratio to B+→K+µ−µ+  (∆md/∆ms), and mµµ spectrum 

 

 Charm physics 
• CP asymmetries and mixing in charm decays 

 

 Other e.g. 
• sin2θeff

lept from measuring AFB of leptons in Z0-decays 
• cLFV τ- → µ−µ+µ− 

• BR(τ- → µ−µ+µ−) < 8.0x10-8 (90% CL) (LHCb 2013-062) 
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 Currently 3.2 fb-1 of integrated luminosity 
 Expect ~4-5 fb-1 in 2015 – 2018 (Run 2) 

 Expected precision in 2018 for representative physics modes: 
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 Large signal cross-sections 
• >100 000   1 000 000 bb� pairs per second at LHCb interaction point 
• Access to all quasi-stable b-flavored hadrons Bu (~40%), Bd (~40%), Bs (~10%), and Bc, and B-baryons Λb (~10%) , … 
      (arXiv:1111.2357v2, arXiv:1301.5286) 
• cc � production 20x more 

 

 The initial state partons have different longitudinal momentum fraction 
 

 The final state bb� / cc� pair are boosted 
 The B / D hadrons appear in the same hemisphere 
 Very good proper time resolution 

 

 Flavor tagging 
• Same side, uses π or K emitted together with signal B / D hadron 
• Opposite side, detects flavor of partner B / D hadron from decay 
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Covers ~4% of the solid angle, but captures ~40% of the heavy quark production cross-section 
• Acceptance 2 < η < 5 with entire detector 
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LHCb 

ATLAS 

CMS 

Luminosity potential exhausted 
 Beams head-on 

LHC Fill 2651 
Operational developments to maximize LHCb physics yield 
 
 

1. Luminosity control  
• Stable luminosity (pileup) through-out fills / months 

• Same trigger configuration 
• Stable detector performance and radiation effects 
Reduced systematics 
95% of the total integrated luminosity was recorded within 3% of 
the optimal luminosity 2011-2012  

 

 

2. Deferred triggering in High-Level Trigger Farm 
• Fraction of events written (~200 kHz) on local farm node disks and 

processed during inter-fill time 
 20 – 25% increase in effective CPU capacity 
 Further developments in this area to improve further for Run 2 

 
 
 

3. LHCb dipole polarity switches 
Systematics from residual detector asymmetries averaged out by      

flipping dipole polarity every 1-2 weeks 
 

 
 All of which will continue to be crucial in the future 
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• Current detector and trigger operated efficiently at 4 times the design pileup conditions (and higher!) 

• Physics output rate stepped up from 2 kHz in 2010 to 5 kHz in 2012 (initial design output was 200 Hz…) 
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 Demonstrated forward high precision tracking and particle ID even with pileup 

 Further demonstration of the concepts for the LHCb upgrade 
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B S/N almost independent of pileup 
D S/N shows some degradation vs pileup. 

B →J/ψK 

LHC web-based experiment overview display  

6 primary vertices 
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 Performances at 8 TeV in 2012 (L0 x HLT)  
• B decays with μμ:  ε ~ 90 % 
• B decays with hadrons: ε ~ 30 % 
• Charm decays:  ε ~ 10 % 
  About half the interesting B decays are lost 

 

 Limitation: FE readout time=900ns   max 1.1 MHz 
• Increase luminosity (=increase pileup)? 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 Efficient selection requires IP and pT of tracks 
 Remove L0 bottle neck 

   Readout detector at 40 MHz 
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12 MHz of visible crossings (2012)  
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µ/µµ 
pT>1.5GeV 
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Software High Level Trigger 
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Fake rate!  
 Increase ET cuts  
      to stay within 1 MHz 
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Baseline 
1. Full detector readout at 40 MHz up to CPU farm 
2. Implement a fast high-level software trigger to select events based on their full topology 
3. Improve sub-detectors 

• Geometry and granularity to allow fast full reconstruction 
• Allow increase instantaneous luminosity up to 2 x 1033 cm-2s-1 

• Replacement due to radiation longevity (up to 100 fb-1) 
4. Final output bandwidth at ~20 kHz 
 
 Improve significantly trigger efficiencies for hadronic channels 
 Increase statistics for all channels 
 
 

Consequences: 
 40 MHz readout requires replacing all FE and BE electronics 
 Detector and readout upgrade must be done in one Technical Shutdown to be of benefit 
 Variable first level activity trigger (1-40 MHz) allows staging the capacity of the high-level trigger farm 
 
• Starting point: 5 - 10 MHz event processing in farm at 1 x 1033 cm-2s-1 
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 Variable Low Level interaction Trigger: 1 – 40 MHz 
• Lower ET/pT cuts of e, γ, hadron, µ 

 
 
 
 
 
 
 
 
 
 
 
 

 

• Yield of hadronic B’s gains up to ~13x compared to 2012 
• Large gain for charm physics as well due to lower pT 

 Performance as function of HLT Farm CPU capacity 
   Non-optimized upgrade example: 
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Linst = 1x1033 cm-2s-1 

HLT farm  3 x 2012 6 x 2012 
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HLT2 rate [kHz] 16 26 
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 Extremely good performance in the pileup environment 
 Regular ageing scans with beam and calibrations vital 
 Detector ageing under control 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Achieve at least same performance with upgraded detector at significantly higher pileup/occupancy 
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Muon System 
µ/h separation 

Calorimeters 
h/e/γ separation 

Tracking System 

RICH Detectors 
K/π  

Vertex Detector 

Impact parameter resolution  20 µm 
Proper time resolution            Δτ = 45 fs for Bs  J/ψ φ and Bs  Ds π  
Momentum resolution            Δp/p = 0.4 % – 0.6 % (5 GeV/c – 100 GeV/c)  
Mass resolution               Δm = 8 MeV/c2 for BJ/ψ X with constraint on J/ψ   
RICH π-K separation              ε(K→K) ~ 95 %, mis-ID ε(π→K) ~ 5 % 
Muon ID               ε(μ→μ) ~ 97 %, mis-ID ε(π→μ) ~ 1-3 % 
E.m. energy resolution           ΔE/E = 1 % ⨁10 %/ E (GeV) 
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VELO Si Strips 
(replace all) 

Silicon Trackers Si Strips (replace all) 

Outer Trackers Straw tubes 
(replace R/O) 

Removal of M1, SPD and PreShower 

Muon MWPC 
(almost compatible, 
possibly GEM in central M2) 

RICH HPDs 
(replace HPDs + R/O, 
remove R1 aerogel) 

or Scintillating Fibre  
Central Tracker 

Calo PMTs 
(Reduce PMTs gain+ replace R/O) 

Main detector replacement concern the tracking system 
 Fast tracking and vertexing will be crucial! 
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 Luminosity projection based on experience in Run 1 and updated schedules: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Clearly, again with the experience of 2010 – 2012, it’s very likely the luminosity trend will 
look different  
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 Expected precision based on statistics uncertainties 
 Precision not expected to be limited by systematics in many analyses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 But strength is the full software trigger to tune to any signature that may be popular in 2020! 
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Overall generic milestones: 
• in 2018/19:  installation (18 months according to planning!) 
• 2016-17: quality control & acceptance tests 
• 2014-16: tendering & serial production 
• Q3/Q4 2013:  TDRs & prototype validation 
• Q1/Q2 2013: technical reviews & choice of technologies 
 2012/2013:  continue R&D towards technical choices 
 2012:   “Framework TDR” submitted & endorsed 
 June 2011:  LoI submitted & encouraged to proceed to TDRs   
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 LHCb has fought hard to earn the title of forward GPD 
• LHCb has demonstrated  forward  tracking and particle ID 
• A very rich physics program 

 

• Continuing on this the LHCb upgrade is largely a trigger upgrade with the ultimate flexibility! 
 

 Folding in efficiencies and luminosity, upgrade get up to 20 times more hadronic events per 
second ! 

• Challenging, but realistic 
• High pile-up data taken in 2010 and in 2012 very encouraging in view of a luminosity upgrade 
• Upgrade allows reaching theoretical uncertainties and opens the door to new observables 
 

 The LHCb Upgrade has been fully approved by CERN 
 
 
 

 
 In continuous search for new flavors! 
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EXTRA SLIDES 
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Two options still considered: 
1. Microstrip sensors: 

• Similar to the existing VELO R and ϕ layout. 
• Finer pitch and segmentation to reduce occupancy, reduced 

thickness and inner radius. 
2. Pixel sensors: 

• High granularity eases pattern recognition. 
• R&D is focusing on planar silicon sensors 55 μm ×55 μm 

(256×256 pixels). 
 Project review for decision scheduled this month 
 

 
 

22 



“Large Hadron Collider Physics”, Barcelona, Spain 13 – 18 May 2013 R. Jacobsson 

 Reduced sensor distance to beam and thinner RF foil 
• Inner radius of RF foil will be reduced from 5.5 mm to 3.5 mm to improve IP-resolution 

 
• The RF foil currently contributes with 80% of the material budget before r1 and r2 points  
 Thinner foil from current 300µm to200 µm by milling 

 
 Cooling challenge 

• Close to beam: ∼ 5 × 1015 neqcm−2 

• Must cool to -10oC to -15oC to prevent thermal runaway 
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 TT 
• Redone with same Si-strip technology but improved geometry: 

• Better coverage by overlapping sensors 
• Better vertical segmentation 
• Closer to beam pipe improve small-angle acceptance 
• Less material with thinner sensors (0.5 mm  0.2−0.3 mm) 

 Aim at fast VELO-TT momentum measurement 
 Reduce fake VELO-IT/OT tracks 

 
 IT/OT – two options considered for the “T-stations” 

1. Silicon IT 
• New silicon strip detector with larger coverage reducing geometry of OT in 

central region 
• “η” coverage: IT/(IT+OT): 33%  54% 
• Si-IT size driven by OT performance – cut whole in central OT to reduce effect 

of two high occupancy  
 

2. Fibre Tracker 
• Central tracker based on Scintillating Fibres with Silicon Photo-Multiplier (SiPM) 
• Five layers of 2.5 m long scintillating fibres with 250 μm diameter. 
• Need to keep the fibres straight to ~50 µm and flat to ~200 µm over 2.5m 
• Expected performance: 60 – 100 μm spatial resolution. 
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