

#### Outline

- Physics Motivation and Strategy
- Core Upgrade (endorsed by LHCC)
  - ITS Upgrade
  - High Rate Capabilities (TPC, Electronics, DAQ/HLT/ Offline, ...)
  - Physics Performance Examples
- Further Additions
  - MFT (internally approved, to be submitted)
  - FoCal (under internal consideration)
- Summary

## Physics Motivation

- measurement of heavy-flavour transport parameters
  - study of QGP properties via transport coefficients
- charmonium states down to p<sub>T</sub>=0
  - statistical hadronization vs. dissociation/recombination
  - enhancement of forward measurement (to be endorsed)
- measurement of low-mass and low-p<sub>T</sub> dileptons
  - chiral symmetry restoration, thermal radiation
- jet quenching and fragmentation (with PID)
- light anti- and hyper-nuclei
- optional addition: measurement of large rapidity direct photons
  - low-x structure and gluon saturation

## Upgrade Strategy

- focus on low p<sub>T</sub>, untriggerable probes requiring high statistics
  - increase rate capabilities for minimum bias heavy-ion collision
    - upgrade of TPC and ITS, all readout electronics, etc.
  - target: inspection of 50 kHz of minimum bias Pb+Pb
    - factor 100 increase in statistics (for untriggered probes)
  - collect > 10 nb<sup>-1</sup> of integrated luminosity
    - upgrade in LS2, implies running few years after LS3
- ALICE is unique in low-p<sub>T</sub>/low-mass measurements and particle identification
  - further enhance capabilities, in particular with upgraded ITS
    - closer to beam, less material, better resolution



Lol (addendum) to be submitted to LHCC

planned for installation in LS2

under internal review - possible installation in LS3

new ITS: high resolution, low material budget TPC: new GEM readout chambers. pipelined readout

Lol (addendum) to be submitted to LHCC

planned for installation in LS2

under internal review – possible installation in LS3



- Lol endorsed by LHCC, TDRs in preparation

  Lol (addendum) to be submitted to LHCC
  - under internal review possible installation in LS3

planned for installation in LS2



- Lol endorsed by LHCC, TDRs in preparation Lol (addendum) to be submitted to LHCC
  - planned for installation in LS2
  - under internal review possible installation in LS3

improve secondary vertex resolution by factor  $\approx 3$  (5) in r $\phi$  (z):

- inner layer as close as possible (R = 2.2 cm)
  - smaller beam pipe (R = 1.9cm)
- less material budget
  - thin sensors (goal: 0.3% X<sub>0</sub>/layer)
  - thinner beam pipe ( $\Delta R = 800 \mu m$ )
- smaller pixel size (2 options)
  - baseline: monolithic pixels (20μm x 20μm)
  - fallback: hybrid pixels (50μm x 50μm)





improved performances:

pointing resolution



#### improved performances:

- pointing resolution
- standalone tracking efficiency at low p<sub>T</sub>





#### improved performances:

- pointing resolution
- standalone tracking efficiency at low p<sub>T</sub>
- standalone momentum resolution





#### Limits of Current TPC



- gating grid (GG) of readout chambers closed to avoid ion feedback
  - limit space charge to tolerable level
  - effective dead time ≈280 µs, maximum readout rate: ≈3.5 kHz

#### Limits of Current TPC



- gating grid (GG) of readout chambers closed to avoid ion feedback
  - limit space charge to tolerable level
  - effective dead time ≈280 µs, maximum readout rate: ≈3.5 kHz
- opening gating grid permanently is not possible
  - ion feedback ≈ 10<sup>3</sup> x number of primary charges
  - large space charge effects (of the order of electrical field)
    - space point distortions of order of 1 m not tolerable!

## TPC Upgrade

#### new readout chambers

- replace MWPC with GEMs
- no gating, small ion feedback
- usage of existing pad-planes possible
  - momentum resolution for constrained tracks not affected



## TPC Upgrade

#### new readout chambers

- replace MWPC with GEMs
- no gating, small ion feedback
- usage of existing pad-planes possible
  - momentum resolution for constrained tracks not affected



continuous sampling at 10 MHz, ship data unsuppressed off detector

needs new electronics
 (FE chip joint project with muon arm)

## TPC Upgrade

#### new readout chambers

- replace MWPC with GEMs
- no gating, small ion feedback
- usage of existing pad-planes possible
  - momentum resolution for constrained tracks not affected

continuous sampling at 10 MHz, ship data unsuppressed off detector

needs new electronics
 (FE chip joint project with muon arm)

extensive R&D program ongoing with lab tests

- confirm low ion feedback
  - goal: 0.25% at gain of 2000
- investigate gain stability





### DAQ: Event Size and Rates

- upgrade of all readout electronics and new DAQ/HLT
- need huge bandwidth to data storage assuming:
  - event size of major systems, I/O rates of online system
  - assume average minbias rate to tape of 20 kHz
- requires data reduction for TPC: clustering, reconstruction

| Detector     | After Zero | e (MByte)  After Data  Compression | Input to<br>Online<br>System<br>(GByte/s) | Compressed |      |
|--------------|------------|------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ITS          | 0.8        | 0.2                                | 40                                        | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0  |
| TPC          | 20.0       | 1.0                                | 1000                                      | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0 |
| TRD (20 kHz) | 0.3        | 0.1                                | 6                                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0  |
| Others (1)   | 0.5        | 0.25                               | 25                                        | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0  |
| Total        | 21.6       | 1.55                               | 1071                                      | 74.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.0 |

## Performance: Heavy Flavour

- thermalization of heavy quarks
  - baryon/meson ratio for charm and beauty
  - azimuthal anisotropy
- heavy quark energy loss
  - nuclear modification factor of identified D and B mesons
    - mass hierarchy of energy loss: smaller energy loss expected for heavy quarks due to dead cone effect
- benchmark channels:

$$D^{0} \to K^{-} \pi^{+}$$

$$B \to D^{0} + X$$

$$\Lambda_{c} \to pK^{-} \pi^{+}$$

### $D^0 \rightarrow K^-\pi^+$

- basic benchmark for all D meson studies
- example: current D meson RAA
  - large uncertainties at low pt
- with upgrade: strongly improved bkg rejection, signal significance
- higher precision on RAA







## Heavy Flavour Elliptic Flow

- current D-meson v<sub>2</sub> measurement:
  - large uncertainties
- ITS upgrade and large luminosity required for high precision
   v<sub>2</sub> measurement of primary and secondary D-mesons







# $B \rightarrow D^0 (\rightarrow K^-\pi^+) + X$

Prompt D, current ITS D from B, upgraded ITS

D from B, current ITS ...

10

- discriminate primary and secondary D-mesons
- long lifetime of B meson (cτ ≈ 500µm):
   measure via impact parameter
  - significantly improved by upgrade
- e.g. measurement of R<sub>AA</sub> (B→D<sup>0</sup>)



## $\Lambda_{\rm C} \rightarrow p K^-\pi^+$

- challenging measurement:
  - small branching ratio, short decay length ( $c\tau \approx 60 \mu m$ ), large combinatorial background in Pb+Pb
- measurement possible at low p<sub>T</sub> only with upgrade and high rate





### Low-Mass Dielectrons

- uncertainties with current ITS
  - limited by background subtraction and statistics



#### Low-Mass Dielectrons

- uncertainties with current ITS
  - limited by background subtraction and statistics
- high rate measurement with new ITS (using B = 0.2T)
  - more efficient cuts to reduce background, high statistics: allows detailed measurement of low-mass dielectrons





#### Muon Forward Tracker



5 circular Si-pixel planes covering (most of) muon arm acceptance:  $-3.6 < \eta < -2.5$ 

pixel size ≈ 25 µm x 25 µm

technology of choice: monolithic active pixels

complement muon arm with tracking in front of absorber

- secondary vertex measurement
- better background rejection
- improved mass resolution

access prompt vs. secondary J/ψ, possible sensitivity to chiral symmetry via low-mass dileptons



### Performance: Charmonium

- forward charmonium measurements: better background rejection
  - improvement of signal/background
  - crucial for low p<sub>T</sub> ψ' measurements



### Performance: Charmonium

- MFT adds unique capability to tag secondary J/ψ
  - fit distributions of pseudo-decay length
  - measurement of B production via J/ψ
  - unique contribution at low p<sub>T</sub> and large y



### nPDF/DGLAP vs CGC



two scenarios for forward  $\gamma$  production in p+A at LHC:

- normal nuclear effects
   linear evolution, shadowing
- saturation/CGC running coupling BK evolution

- strong suppression in direct γ R<sub>pA</sub>
  - clean signal for isolated photons
- signals expected at forward η, low-intermediate p

#### FoCal in ALICE



electromagnetic calorimeter for  $\gamma$  and  $\pi^0$  measurement

#### two scenarios:

- at z ≈ 8m (outside magnet)
   3.3 < η < 5.3</li>
   (space to add hadr. calorimeter)
- at  $z \approx 3.6 m$  (current PMD)  $2.5 < \eta < 4.5$
- main challenge: separate  $\gamma/\pi^0$  at high energy
- need small Molière radius, high-granularity read-out
  - Si-W calorimeter, granularity ≈ 1mm<sup>2</sup>

## Summary

- ALICE has strong physics program for precision QGP studies
  - unique in low-p⊤ probes
  - requires ITS upgrade, enhanced rate capabilities (e.g. TPC) + running beyond LS3
    - significant R&D program for upgrades
  - MFT will enhance forward muon measurements
    - to be endorsed by LHCC
- further enhancement of the ALICE setup for forward physics under investigation

# Backup Slides

#### Performance: Low Mass e+e-

- low mass dileptons: possible access to chiral symmetry breaking, thermal photon spectrum
- very challenging measurement
  - crucial to control background
    - dominant contribution to systematic uncertainty
  - require lower field run to enhance acceptance at low p<sub>T</sub>, m



## Direct y Performance in pp



direct photon/all > 0.1 for  $p_T > 4$  GeV/c



20-40% uncertainty at  $p_T = 4 \text{ GeV/c}$  decreases with increasing  $p_T$ 

## Low Granularity Measurement



- low granularity (1cm²) does not allow efficient decay rejection
- direct photon/all  $\approx 0.05$  for all  $p_T$

significant measurement not possible at low p<sub>T</sub>

NB: conditions similar to LHCb