

DØ Results on Diphoton Direct Production and Photon + b and c Jet Production

Lee Sawyer
On behalf of the DØ Collaboration

Louisiana Tech University

Presented at LHCP 2013 Barcelona 14 May 2013

(k)

(I)

Shedding Light on QCD

- Important test of pQCD
 - Soft gluon resummation
- Major background to H→γγ
- Classes of Production
 - Direct (a-e & h-i)
 - "Born & Box" diagrams
 - Single Fragmentation (f)
 - Double Fragmentation (g)

Finding a Photon

- D0 Electromagnetic Calorimeter
 - Approx 20 radiation lengths thick
 - Coverage $|\eta| < 1.1 \& 1.5 < |\eta| < 3.2$
 - $\Delta \eta x \Delta \phi = 0.1x0.1$ (0.05x0.05 at shower max)
- High precision tracking
 - Silicon microstrip tracker
 - Central fiber tracker
 - Central & forward preshower detectors

Finding a Photon

- Central photons are selected from EM clusters reconstructed within a cone with radius R=0.2 requiring:
 - High EM fraction: >97%
 - Isolated in the calorimeter
 - Isolated in the tracker
 - Shower width in 3rd EM layer consistent with an EM object.
- Photon purity is further improved by using an Artificial Neural Net (ANN) for identification
- Inputs:
 - Tracker isolation
 - Number of EM1 cells within R<0.2
 - Number of EM1 cells within 0.2<R<0.4
 - Number CPS clusters within R<0.1
 - Squared-energy-weighted width of energy deposition in the CPS

Photon efficiency: 98%. Systematic uncertainty 1.5%. Rejects ~40% of misidentified jets.

Direct Diphotons

- 8.5 fb⁻¹ of data collected with a variety of di-EM triggers
 - Trigger efficiency after offline selection is ~100%
- Require
 - 2 photons with $p_T>18(17)$ GeV, $|\eta|<0.9$, $E_T^{iso}<2.5$ GeV
 - $-\Delta R(\gamma,\gamma)>0.4$
 - No min. requirements on $\Delta\phi\gamma\gamma$, M $\gamma\gamma$ or p_T($\gamma\gamma$)<M($\gamma\gamma$)
- Primary vertex with highest number of tracks required to have $|z_{PV}| < 60$ cm.
 - Photon kinematics computed with respect to this vertex.

$$E_T^{iso} = \sum_{\substack{\text{partons or hadrons} \\ \text{within } \Delta R < 0.4}} p_{T,i} - p_{T,i}$$

DATA	34020
γγ	20255 +/- 398
γ+jet	2575+/- 516
Dijet	10992+/- 344
Z/γ* ->ee	198+/- 14

γγ Differential Cross-Sections

Submitted to PLB

arXiv:1302.6508

All $\Delta \phi_{\gamma\gamma}$

Double Differential Cross-Sections

arXiv:1302.6508

All $\Delta \phi_{\gamma\gamma}$

Differential $\Delta \phi_{\gamma\gamma}$

γγ Differential Cross-Sections

arXiv:1302.6508

 $\Delta \phi_{\gamma\gamma} < \pi/2$

- Expect larger contribution from fragmentation here

γγ Differential Cross-Sections

arXiv:1302.6508

 $\Delta \phi_{\gamma\gamma} > \pi/2$

- Expect smaller fragmentation contribution here

γγ Differential Cross-Sections: |cosθ*|

arXiv:1302.6508

 $\Delta \phi_{\gamma\gamma} < \pi/2$

Photon + Heavy Flavor Jets

- Primary production proceeds through Compton scattering (lower p_T^{γ}) and quark annihilation (higher p_T^{γ}).
 - Sensitive to b/c quark PDFs, gluon splitting
- Contributions from fragmentation suppressed by requiring an isolated photon.
- Backgrounds primarily from light jets
 - Photon mis-ID
 - Contamination of heavy flavor jets

Identifying b Jets

MVA Discriminant:

Combination of variables sensitive to Secondary Vertices

- Number of SV
- Invariant Mass of Tracks in SV
- Number of Tracks Used to Reconstruct SV
- 2D Decay Length Significance of SV
- Weighted combination of transverse IP significances
- Probability of jet tracks to originate from PV
 Fit SV mass templates to determine b-jet fraction

γ + b-jet Cross Section

PLB 714, 32 (2012)

$$\frac{d\sigma}{dp_T^{\gamma}} = \frac{N_{evt} \times f_{\gamma} \times f_b}{A \times \varepsilon \times L \times \Delta p_T^{\gamma}}$$

Compare to NLO (T. Stavreva & J.F. Owens) $-\mu$ F, μ R set to p_T^{γ} -CTEQ6.6M PDfs

Also compare to PYTHIA and SHERPA

- SHERPA allows for extra hard partons in addition to b-quark

kT-factorization (Lipativ & Zotov)

- Account for additional soft gluon radiation

γ + b-jet Cross Section

PLB 714, 32 (2012)

Central Photons

Forward Photons

NLO agreement good at low $p_T\gamma$; disagreement in shape (central & forward) at higher p_T^{γ} .

Identifying c-jets

- Start with sample of γ+jets
- Enrich heavy flavor content with tight b-tagging
 - Light jets 1-5%
 - Remaining light jets estimated after final selection and subtracted
- Determine fraction of c-jets by fitting
 SV mass templates of b-jets and c-jets

γ+c-jet Cross Section

PLB 719, 6 (2013)

$$\frac{d\sigma}{d\mathbf{p}_{T}^{\gamma}} = \frac{N_{evt} \times f_{\gamma} \times f_{b}}{\mathsf{A} \times \varepsilon \times L \times \Delta \mathbf{p}_{T}^{\gamma}}$$

-Similar theory comparisons as with γ+b-jet -Again, good agreement at low p_T^γ

γ+c-jet Cross Section

PLB 719, 6 (2013)

Also compare to PDF models with intrinsic charm (BHPS IC)

- -Better agreement but still low
- -Need for higher order pQCD, better estimates of g->cc splitting

$\sigma(\gamma + c - jet) / \sigma(\gamma + b - jet)$

- •Ratio → Cancellation of many common systematic uncertainties
- •Lower p_{T}^{γ} :
 - •Good agreement with NLO, SHERPA, and PYTHIA
- •Higher p_{T}^{γ} :
 - Data shows higher ratios

Conclusions

D0 Direct Diphoton Results

Measurements of cross sections for direct diphoton production at

- \sqrt{s} =1.96 TeV with 8.5 fb⁻¹, in three ranges of $\Delta \phi_{\gamma\gamma}$
 - •High statistics sample allowing precision measurements over a wide kinematic range
 - •Measurements are compared to state-of-art theoretical predictions such as DIPHOX and RESBOS, as well as PYTHIA.
 - None of the theoretical predictions fully describes the data in all kinematic regions of the four variables considered.

Photon + b-jet & c-jet Results

Measurement of cross section of γ +b-jet at \sqrt{s} =1.96 TeV with 8.7 fb⁻¹.

- Significant discrepancies at high photon p_T.
- Need for higher-order theory predictions.

Measurement of cross section of γ +c-jet at \sqrt{s} =1.96 TeV with 8.7 fb⁻¹.

- Similar discrepancies at high photon p_T.
- Ratio $\sigma(\gamma + c jet)/\sigma(\gamma + b jet)$ suggest larger $g \rightarrow cc$ contributions