Jet and photon measurements from ATLAS

João Gentil Mendes Saraiva LIP Lisboa

Outline

- Introduction
- Jets Differential cross sections
 - Inclusive jets → PDFs refit
 - Di-jets
 - Multi-Jet ratios → α_s
- Photons Differential and Integrated cross sections
 - Prompt isolated photons
 - Di-photons
- Conclusions

Documents used for this talk:

Prompt photons: ATLAS-CONF-2013-022

Di-photon: arXiv:1211.1913v2 Di-jets: ATLAS-CONF-2012-021

Inc. Jet:: arXiv:1304.4739

alpha_s: ATLAS-CONF-2013-041

Introduction

- Jets and photons increase our understanding of QCD interactions:
 - Test the validity of pQCD down to shortest accessible distances
 - Sensitive to protons PDFs and measure $α_s$
 - Photons are colorless probes to QCD and used to constrain PDFs
 - Di-Photons e.g. are an important background for H->yy
 - QCD with the LHC: high statistics + access larger pT scales
- In this talk:
 - Data from 2010/2011

2010	7 TeV	37 pb-1
2011	7 TeV	4.8 fb-1
2011	2.76 TeV	0.20 pb-1

Comparison with NLO/NNLO QCD calculations

Inclusive jets Cross Sections

$$\frac{d^2\sigma}{dp_T dy}$$

$$20 \le p_T \le 430 \, GeV \wedge |y| < 4.4$$

Previously @ 7 TeV

Well described by NLO pQCD x corr. Non-perturbative effects from hadronization + underlying event (UE)

Now results for 2.76 TeV detailed

Calculation ratio of the two CS:

- $\rho(y, x_T) \downarrow$ Theoretical uncertainties
- $\rho(y, p_T) \downarrow$ Experimental systematic uncert.
- Explore correlations between data/theory to re-fit PDFs

Inclusive jets XS/NLO predictions

pQCD uncertainties ► 5-15% central region _____ 10-80% forward region

Low pt from scale $(\mu_{R_i} \mu_F)$ uncert. **High pt** from PDF uncert

NLOJet++

Results consistent with theory predictions with different PDFs sets CT10 MSTW 2008 NNPDF 2.1 HERAPDF 1.5 ABM 11 within their systematic uncertainties

POWEG+PYTHIA+UE tune

Model close to data in the forward region than central region Perugia 2011 tune farther away AUET2B tune closer

Inclusive XS ratios 2.76 TeV/7 TeV

Flat response

- Asymptotic freedom of QCD
- Evolution of the gluon distribution in the proton as function of the QCD scale

Comparison with POWEG (back-up slides)

· Agreement with data and pQCD

Vs p_T

Dependence with rapidity:

- Data higher for central region
- Data lower for forward region

Comparison with POWEG (back-up slides)

- Follows pQCD in barrel region
- · Close to data in forward region

Gluon and sea parton density from inclusive jets XS

Measured cross sections and ratios compared to predictions based on fitted PDF sets

Dijet production XS

 $p_{T,1}>100 \, GeV \wedge p_{T,2}>50 \, GeV \wedge |y|<2.8$ rapidity bin $y*=|y^{j1}-y^{j2}|/2$

LO MC (PYTHIA/SHERPA) have a similar behavior (back-up slides)

Multi-jets XS ratios

Two quantities sensitive to α_{ϵ}

Kinematics selection: $p_T > 40 \, GeV \wedge |y| < 2.8$ $p_{T,lead} > 50 \, GeV$

$$R_{3/2}(p_{\mathrm{T}}^{\mathrm{lead}}) = \frac{d\sigma_{N_{\mathrm{jet}} \ge 3}/dp_{\mathrm{T}}^{\mathrm{lead}}}{d\sigma_{N_{\mathrm{jet}} \ge 2}/dp_{\mathrm{T}}^{\mathrm{lead}}}$$

$$N_{3/2}(p_{\mathrm{T}}^{(\text{all jets})}) = \frac{\sum_{i}^{N_{\mathrm{jet}}} \left(d\sigma_{N_{\mathrm{jet}} \ge 3} / dp_{\mathrm{T},i} \right)}{\sum_{i}^{N_{\mathrm{jet}}} \left(d\sigma_{N_{\mathrm{jet}} \ge 2} / dp_{\mathrm{T},i} \right)}$$

R_{3/2} receives a single entry/event

N_{3/2} receives all jets in a event

ATLAS-CONF-2013-041

N_{3/2} less sensitive to renormalization and factorization scale variations

α_s strong coupling constant

Combined fit result:

$$\alpha_s(M_Z) = 0.111 \pm 0.006(\text{exp.}) ^{+0.016}_{-0.003}(\text{theory})$$

$$\alpha_s(M_Z) = 0.1184 \pm 0.0007$$
 World $\alpha_s(M_Z) = 0.1178 \pm 0.0001 ({\rm stat.})^{+0.0081}_{-0.0095} ({\rm syst.})$ CDF $\alpha_s(M_Z) = 0.1191^{+0.0048}_{-0.0071}$ D0

PDF	$\alpha_s(M_Z)$
MSTW08	0.111 ± 0.006
CT10	0.109 ± 0.006
HERAPDF 1.5	0.114 ± 0.005
ABM11	0.116 ± 0.005
NNPDF 2.3	0.112 ± 0.005
	A
	(exp.)

Prompt isolated photons XS

NLO calculations

JETPHOX 1.3 NLO QCD direct and frag. contrib. + NLO y frag. func. BFG set II + PDFs CT10/MSTW2008NLO

LO Simulation

PYTHIA 6.4 and HERWIG 6.5 only qg->qy and qq->qy PYTHIA + MRST2007LO + AMBT2 HERWIG +MRST2007LO + AUET2

PYTHIA reproduces data

HERWIG underestimates

Shape well described by both

NLO/PYTHIA agreement

$$|\eta| < 1.37$$
 $\sigma(\gamma + X) = 234 \pm 2(stat)_{-9}^{+13}(syst) \pm 4(lumi) pb$

PYTHIA	224 pb
HERWIG	187 pb
JETPHOX CT10	203 ± 25 (theo.) pb
JETPHOX MSTW2008	212 ± 24 (theo.) pb

$$1.52 \le |\eta| < 2.37$$
 $\sigma(\gamma + X) = 122 \pm 2(stat)^{+9}_{-7}(syst) \pm 2(lumi) pb$

PYTHIA	118 pb
HERWIG	99 pb
JETPHOX CT10	105 ± 15 (theo.) pb
JETPHOX MSTW2008	109 ± 15 (theo.) pb

Di-photons XS vs pT, vs Δφ

Integrated exp. cross section

 $44.0^{+3.2}_{-4.2}$ pb

36

Theory for CS comparisons

 44.0^{+6}_{-5} pb **2vNNLO** NNLO direct part

BUT neglecting fragmentation

39_{-6}^{+7} pb **DIPHOX+GAMMA2MC**

NLO direct+fragmentation GAMMA2MC NNLO to set contribution of gg->yy to a size of NLO terms

PYTHIA*

LO di-photon ME and models high order through y-jet and di-jet production combined with ISR and FSR

SHERPA*

Like PYTHIA + di-photon higher order realemission ME

SHERPA better than PYTHIA

High-order terms are included in SHERPA

DIPHOX

Underestimates data

2yNNLO

Disagreement from lack of fragmentation component: pT [20,150] GeV and low $\Delta \phi$

NNLO is closer to data

Summary and Conclusions

- Globally: a reasonable reproduction of data from NLO QCD predictions
- Increased sensitivity to PDFs is achieved with the 2.76 TeV and 7 TeV results correlation:
 - ▶ HERA+ATLAS: harder gluon and softer sea-quark densities at high Bjorken-x.
- A value of α_s ~ 0.111 compatible with previous measurements and predictions using different PDFs
 - $lackbox{ } \alpha_{\varsigma}$ with a **running compatible** with the RGE prediction.
- Prompt photons results close to NLO pQCD predictions over a large E_T
 - ▶ **Higher order** descriptions are necessary for a **good description of data**.
- Di-photons results show that higher order theory predictions get a better agreement with data
 - 20% underestimation for LO while NNLO with an almost perfect match.

2012 data (not covered in this talk) will access an even higher kinematic range and give much more statistics

Inclusive jets CS

Inclusive jets CS ratios 2.76/7 (syst.)

Cross section ratio uncertainties

 10^{2}

30 40

 2×10^{2}

p_{_} [GeV]

$$\frac{\Delta \rho_{s_i}}{\rho} = \frac{1 + \delta_{s_i}^{2.76 \text{ TeV}}}{1 + \delta_{s_i}^{7 \text{ TeV}}} - 1$$

 χ_T Momentum fraction of the initial state partons with respect to the proton beam

Systematic uncertainties considered fully correlated for both \sqrt{s}

50

p_ [GeV]

 2×10^{2}

p_{_} [GeV]

13-18 May 2013, LHCP2013 Barcelona, Spain

30 40 50

Inclusive CS ratios 2.76 TeV/7 TeV

 X_T Momentum fraction of the initial state partons with respect to the proton beam

Dijets

Atlas studies resulted in a new version of POWHEG being released, to account for problems seen of low pt partons becoming high pt jets

Dijets ratios Data/NLO pQCD

Data reproduced well by pQCD being set within stat. and syst. errors.

Multi-jets CS ratios

NLO pQCD predictions NLOjet++, corrected for non-perturbative effects: $\alpha_s(M_z) = 0.110$ and 0.130

A least-squares fit is used to fit the data to the theory predictions as a function of alpha_s(MZ) for 210 GeV < p(all jets)T < 800 GeV.

The least-squares fit is performed both individually in each $p_{_{\! T}}$ bin and combining all $p_{_{\! T}}$ bins

 $\alpha_{_{_{S}}}$ determination

prompt isolated photons

Colorless probe to hard scattering process — Precise tests of pQCD predictions Sensitive to the gluon content through qg → qy use to constrain PDFs

Isolation (excluding 0.125x 0.175 ηxφ)

Isolation Energy (energy in a isolation cone $\Delta R=0.4$)

$$E_T^{iso}$$
 < 7 GeV

Kinematic selection:

$$100 \le E_T^{\gamma} \le 1000 \, GeV$$

$$|\eta^{\gamma}| < 1.37 \land 1.52 \le |\eta^{\gamma}| \le 2.37$$

High eta granularity

Background subtraction from **dominant** π^0 decays and **residual** fake photons

E_τ [GeV]

Di-photons selection and purity

Probe pQCD + Understand the irreducible background for processes with 2 photons in the final state

Kinematic selection

 $E_T^{\gamma,1}$ >25 $GeV \wedge E_T^{\gamma,2}$ >22 $GeV \wedge \Delta R$ <0.4 $|\eta| < 1.37 \land 1.52 \le |\eta| \le 2.37$

 $\Delta \phi_{yy}[rad]$

1.5

Irreducible backgrounds may come from boson and di-boson decays resulting from electrons that fake photons

Electron background

Enhancements due to Z boson $m_{yy} \sim m_{z}$, low $p_{T,yy}$ and $\Delta \phi_{yy} \sim \pi$

 $\Delta \phi_{vv}$

Sensitive to the fragmentation model (both photons originate from fragmentation)

= π and small transverse momentum: sensitive to soft gluons emission not well described by fixed-order perturbation theory

0.2 0.4 0.6

 $\cos \theta_{\gamma \gamma}$

Di-photons vs m12, vs cos θ*

