Distinguishing LNV scalars at the LHC

Francisco del Águila M. Chala, A. Santamaría and J. Wudka

LACP 2013, Barcelona, May 16

Outline

- Introduction: What can we expect if we (do not) observe a same-sign di-lepton scalar resonance ? a see-saw type II mediator violating Lepton Number (LN), a Little Higgs or Extra Dimensional reminiscence, ... There are many phenomenological papers addressing what we can expect, but discussing in general two alternatives depending if the doubly-charged scalar has a large coupling to WW or not. We will assume that it is observable in the di-lepton channel and may violate LN, generalizing the models of see-saw of type II.
- Discrimination: Their production and decays are then fixed but one has to account for several final modes to characterized the new scalar multiplet.

CMS and ATLAS have set stringent limits on doubly-charged scalars H^{±±} decaying into two same-sign leptons ~ 400 GeV with only 5 fb⁻¹ at 7 TeV

Which very much depend on the assumed di-leptonic branching ratios, in particular, into Ts, and especially into gauge bosons. For instance, if the new scalar muliplet has a neutral component getting a v.e.v., through the gauge coupling $g^2 < H^0 > H^{++}W^-W^-$

Within this class of models the best studied case is the seesaw of type II with a heavy scalar triplet ($\Delta^{++} \Delta^{+} \Delta^{0}$) giving Majorana masses to neutrinos

 Δ BR's into leptons are a high energy window to neutrino masses and mixings, and may even allow for reconstructing the PMNS matrix.

They depend on the neutrino masses and mixings, being the main dependance on α_2 (in the plots $\beta_2 - \beta_3$ and β_2 , respectively).

jueves 16 de mayo de 2013

	and the second second second second second	
ſ	$\left(\Delta^{++}\right)$	$(\overline{\tilde{L}_L}\tau^a L_L)\Delta^{-a}$
Dimension 4	Δ^+	
	$\left(\Delta^{\circ} \right)$	
	κ^{++}	$\overline{l_R^c} l_R \kappa$
	$\left(\Sigma^{++}\right)$	$(-1)^{\frac{1}{2}-b} \mathcal{C}_{a,b}^{1\times\frac{1}{2}\rightarrow\frac{3}{2}} (\overline{\tilde{L}_L}\tau^a L_L) \phi^b \Sigma^{-a-b}$
Dimension 5	Σ^+	
	Σ^0	
Dimension	Σ'^-	
	$\left(\chi^{++}\right)$	$(-1)^{1-a}(\overline{\tilde{L}_L}\tau^a L_L)(\phi^{\dagger}\tau^{-a}\chi), \ \overline{l_R^c}l_R(\tilde{\phi}^{\dagger}\chi)$
	$\left(\chi^{+} \right)$	
ſ	$\left(\Omega^{++}\right)$	$\mathcal{C}^{1\times 1\to 2}_{a,b}(\overline{\tilde{L}_L}\tau^a L_L)(\tilde{\phi}^{\dagger}\tau^b\phi)\Omega^{-a-b}$
	Ω^+	
Dimension 6 {	Ω^0	
	Ω^{-}	
l	(Ω)	

	a Successive Statistics and loss	
Dimension 4 〈	$\left(\begin{pmatrix} \Delta^{++} \\ \Delta^{+} \\ \Delta^{0} \end{pmatrix} _{\kappa^{++}} \right)$	$(\overline{\tilde{L}_L}\tau^a L_L)\Delta^{-a}$
Dimension 5 〈	$\begin{pmatrix} \Sigma^{++} \\ \Sigma^{+} \\ \Sigma^{0} \\ \Sigma'^{-} \end{pmatrix}$ $\begin{pmatrix} \chi^{++} \\ \chi^{+} \end{pmatrix}$	$(-1)^{\frac{1}{2}-b} C_{a,b}^{1\times\frac{1}{2}\rightarrow\frac{3}{2}} (\overline{\tilde{L}_L}\tau^a L_L) \phi^b \Sigma^{-a-b}$ $(-1)^{1-a} (\overline{\tilde{L}_L}\tau^a L_L) (\phi^{\dagger}\tau^{-a}\chi), \ \overline{l_R^c} l_R(\tilde{\phi}^{\dagger}\chi)$
Dimension 6 <	$ \left(\begin{array}{c} \Omega^{++} \\ \Omega^{+} \\ \Omega^{0} \\ \Omega^{-} \\ \Omega^{} \\ \Omega^{} \end{array}\right) $	$C^{1\times 1\to 2}_{a,b}(\tilde{L}_L\tau^a L_L)(\tilde{\phi}^{\dagger}\tau^b\phi)\Omega^{-a-b}$

Dimension 4	$\begin{pmatrix} \Delta^{++} \\ \Delta^{+} \\ \Delta^{0} \end{pmatrix}_{\kappa^{++}}$	$(\overline{L}_L \tau^a L_L) \Delta^{-a}$ $\overline{l_R^c} l_R \kappa$	$\overline{e_L^c} e_L \mathrm{H}^{++}$
Dimension 5	$\begin{pmatrix} \Sigma^{++} \\ \Sigma^{+} \\ \Sigma^{0} \\ \Sigma'^{-} \end{pmatrix}$ $\begin{pmatrix} \chi^{++} \\ \chi^{+} \end{pmatrix}$	$(-1)^{\frac{1}{2}-b} C_{a,b}^{1\times\frac{1}{2}\rightarrow\frac{3}{2}} (\overline{L}_L \tau^a L_L) \phi^b \Sigma^{-a-b}$ $(-1)^{1-a} (\overline{L}_L \tau^a L_L) (\phi^{\dagger} \tau^{-a} \chi), \ \overline{l_R^c} l_R (\tilde{\phi}^{\dagger} \chi)$	
Dimension 6	$ \begin{pmatrix} \Omega^{++} \\ \Omega^{+} \\ \Omega^{0} \\ \Omega^{-} \\ \Omega^{} \end{pmatrix} $	$C^{1\times 1\to 2}_{a,b}(\overline{\tilde{L}_L}\tau^a L_L)(\tilde{\phi}^{\dagger}\tau^b\phi)\Omega^{-a-b}$	

Dimension 4	$ \left(\begin{array}{c} \Delta^{++} \\ \Delta^{+} \\ \Delta^{0} \\ \kappa^{++} \end{array} \right) $	$(\overline{L}_L \tau^a L_L) \Delta^{-a}$	$\overline{e_L^c}e_L\mathrm{H}^{++}$
Dimension 5	$ \left(\begin{array}{c} \Sigma^{++} \\ \Sigma^{+} \\ \Sigma^{0} \\ \Sigma^{\prime-} \end{array}\right) \\ \left(\begin{array}{c} \chi^{++} \\ \chi^{+} \end{array}\right) $	$(-1)^{\frac{1}{2}-b} C_{a,b}^{1\times\frac{1}{2}\rightarrow\frac{3}{2}} (\overline{L}_L \tau^a L_L) \phi^b \Sigma^{-a-b}$ $(-1)^{1-a} (\overline{L}_L \tau^a L_L) (\phi^{\dagger} \tau^{-a} \chi), \ \overline{l_R^c} l_R (\tilde{\phi}^{\dagger} \chi)$	
Dimension 6	$\left\{ \begin{array}{c} \Omega^{++} \\ \Omega^{+} \\ \Omega^{0} \\ \Omega^{-} \\ \Omega^{} \end{array} \right\}$	$C^{1\times 1\to 2}_{a,b}(\tilde{L}_L\tau^a L_L)(\tilde{\phi}^{\dagger}\tau^b\phi)\Omega^{-a-b}$	

$$\mathcal{L}_{\gamma}^{\mathbf{H}^{\pm\pm}} = ieQ(\partial^{\mu}\mathbf{H}^{--})\mathbf{H}^{++}A_{\mu} + \text{h.c.},$$
$$\mathcal{L}_{Z}^{\mathbf{H}^{\pm\pm}} = \frac{ig}{c_{W}}(T_{3} - Qs_{W}^{2})(\partial^{\mu}\mathbf{H}^{--})\mathbf{H}^{++}Z_{\mu} + \text{h.c.}$$

$$\mathcal{L}_W^{\mathbf{H}^{\pm\pm}} = \frac{ig}{\sqrt{2}}\sqrt{(T - T_3 + 1)(T + T_3)}[\mathbf{H}^{++}(\partial^{\mu}\mathbf{H}^{-}) - (\partial^{\mu}\mathbf{H}^{++})\mathbf{H}^{-}]W_{\mu}^{-} + \text{h.c.}$$

			(1, 0	, 0)	$(\frac{1}{2},$	$\frac{1}{2}, 0)$	$(\frac{1}{2})$	$,0,\frac{1}{2})$	$(\frac{1}{3})$	$(\frac{1}{3}, \frac{1}{3})$
Quintuplet	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p$	$^{\pm})l^{\mp}l^{\mp}p_{T}^{miss}$		± 38 501 \pm		± 25	362 ± 22		238	8 ± 19
Quintuple	$\left\{ (l^{\pm}l^{\pm})(l^{\mp}l^{\mp})\right\}$)	1046	± 32	261	± 16	26	1 ± 16	j) $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ 22 238 ± 19 16 116 ± 11 18 139 ± 16 12 68 ± 8 15 70 ± 13 9 34 ± 6 3 35 ± 12 6 17 ± 4 3 31 ± 12 6 15 ± 4 $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ 30 ± 17 76 ± 15 88 ± 14	6 ± 11
Quadrup	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p$	T^{miss}	765 =	± 30	293	± 20	212	2 ± 18	139	9 ± 16
Quadrupi	$\left(l^{\pm}l^{\pm} \right) (l^{\mp}l^{\mp})$)	612 =	1307 ± 38 501 ± 25 362 ± 22 238 ± 19 1046 ± 32 261 ± 16 261 ± 16 116 ± 11 765 ± 30 293 ± 20 212 ± 18 139 ± 16 612 ± 24 153 ± 12 153 ± 12 68 ± 8 383 ± 22 147 ± 16 106 ± 15 70 ± 13 306 ± 18 77 ± 9 77 ± 9 34 ± 6 189 ± 17 73 ± 14 53 ± 13 35 ± 12 151 ± 12 38 ± 6 38 ± 6 17 ± 4 168 ± 17 64 ± 13 47 ± 13 31 ± 12 135 ± 12 34 ± 6 34 ± 6 15 ± 4						
Triplet	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p$	T^{miss}	383 ± 22		147 ± 16		106 ± 15		70	± 13
mpiec	$\left((l^{\pm}l^{\pm})(l^{\mp}l^{\mp}) \right)$)	306 =	± 18	77	$\frac{1}{2}, 0$) $(\frac{1}{2}, 0, \frac{1}{2})$ $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ ± 25 362 ± 22 238 ± 19 ± 16 261 ± 16 116 ± 11 ± 20 212 ± 18 139 ± 16 ± 12 153 ± 12 68 ± 8 ± 12 153 ± 12 68 ± 8 ± 16 106 ± 15 70 ± 13 ± 9 77 ± 9 34 ± 6 ± 14 53 ± 13 35 ± 12 ± 6 38 ± 6 17 ± 4 ± 13 47 ± 13 31 ± 12 ± 6 34 ± 6 15 ± 4 $(\frac{1}{2}, 0, \frac{1}{2})$ $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ 261 ± 20 130 ± 17 153 ± 17 76 ± 15 77 ± 15 38 ± 14				
Doublet {	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p$	$l^{\pm}l^{\pm})l^{\mp}l^{\mp}p_T^{miss}$		189 ± 17		73 ± 14		53 ± 13		± 12
Doublet	$\left\{ (l^{\pm}l^{\pm})(l^{\mp}l^{\mp}) \right\}$		151 =	1 1 <th1< th=""> <th1< th=""></th1<></th1<>						
Singlet	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p$	$\int (l^{\pm}l^{\pm}) l^{\mp} l^{\mp} p_T^{miss}$		168 ± 17		64 ± 13		47 ± 13		± 12
Singlet $\begin{cases} (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p_T^m \\ (l^{\pm}l^{\pm})(l^{\mp}l^{\mp}) \end{cases}$)	135 ± 12		34 ± 6		34 ± 6		1	5 ± 4	
	$\begin{array}{c c} (l^{\pm}l^{\pm})(l^{\mp}p_T^{miss}) & (1) \\ \hline \\ \text{Quintuplet} & 10 \\ \hline \\ \text{Quadruplet} & 59 \\ \hline \\ \\ \text{Triplet} & 29 \\ \end{array}$		$(\frac{1}{2}, \frac{1}{2})$		$\left \frac{1}{2}, 0 \right \left(\frac{1}{2}, 0, \frac{1}{2} \right)$		$(0, \frac{1}{2})$	$(\tfrac{1}{3}, \tfrac{1}{3}, \tfrac{1}{3})$		
			11 ± 34 283		± 21 261		± 20 130 \pm		± 17	
			92 ± 27 166		± 18 153 :		± 17 76 \pm		:15	
			6 ± 21 83		± 15 77 ± 15		± 15	38 ± 14		

 41 ± 13

 0 ± 12

 38 ± 14

 0 ± 12

 19 ± 13

 0 ± 12

 146 ± 17

 0 ± 12

Doublet

Singlet

$$\sigma_{lla} \equiv 2\sigma z_{ll} z_a, a \neq ll$$

$$\sigma_{lllp_T^{miss}} = \sigma_{lll} + 2\sum_{a=l\tau,\tau\tau,WW} \sigma z_{ll} z_a Br(a \to ll + p_T^{miss})$$

It is enough to group the sample with four charged leptons in three sub-sets:

$$(z_{ll}, z_{l\tau}, z_{\tau\tau} + z_{WW})$$

- Doubly-charged resonances in di-leptonic channels have in general sizeable couplings to all leptons flavours, in particular to t leptons, and maybe to gauge bosons W.
- If they are observed, the events with four final leptons alone allow for discriminating among the possible new scalar multiplet additions.

jueves 16 de mayo de 2013