

Top quark pair properties

spin correlation, charge asymmetry and complex final states at LHC in ATLAS

F. Rubbo, on behalf of the ATLAS collaboration

Introduction

The top quark

- Heaviest particle, m_{top}~173 GeV
- Decays before hadronization
- Yukawa coupling ~1

Properties

- Test SM predictions
- Search for New Physics

Top pair analyses – common features Requirements:

- single lepton trigger
- isolated lepton(s)
- missing transverse momentum
- anti-k_t R=0.4 jets
- b-tagging

Backgrounds:

- W/Z+jets (data-driven)
- Fake leptons from multijet (data-driven)
- Single Top, Z+jets, Diboson (MC)

Outline

 Charge asymmetry: lepton+jets dilepton

Eur.Phys.J. C72 (2012) 2039 ATLAS-CONF-2012-057

• Spin correlation: dilepton

Phys. Rev. Lett. 108, 212001 (2012)

- $t\bar{t}\gamma$ cross-section: lepton+jets (+photon) ATLAS-CONF-2011-153
- Search for $t\bar{t}Z$ production:

3 leptons ATLAS-CONF-2012-126

Charge asymmetry

vs = 7 TeV, 1.04 fb⁻¹ single lepton

- Reconstruction: kinematic likelihood fit
- Asymmetry:

$$A_{C}^{t\bar{t}} = \frac{N(\Delta \mid y \mid > 0) - N(\Delta \mid y \mid < 0)}{N(\Delta \mid y \mid > 0) + N(\Delta \mid y \mid < 0)}$$

with $\Delta |y| = |y_{top}| - |y_{antitop}|$

• SM prediction : $A_{c}^{t} = 1.15\%$ JHEP 1207 (2012) 151

 $A_{C} = -0.019 \pm 0.028(stat.) \pm 0.024(syst.)$

 $vs = 7 \text{ TeV}, 1.04 \text{ fb}^{-1}$ single lepton

Charge asymmetry vs $m_{t\bar{t}}$

Eur.Phys.J. C72 (2012) 2039

• $A_c vs m_{t\bar{t}}$: more sensitive to bSM effects • two bins: below/above $m_{t\bar{t}}$ = 450 GeV • CDF reports A_{FB} deviations from SM in high $m_{t\bar{t}}$ region (> 450 GeV, 3.1 σ) and $m_{t\bar{t}}$ dependence (slope, 2.8 σ) arXiv:1211.1003

ATLAS measurement compatible with SM
Some tension with flavor changing Z' models

F.Rubbo - Top Properties at ATLAS -

Charge asymmetry – dilepton

Spin correlation

√s = 7 TeV, 2.1 fb⁻¹ di-lepton

- tops decay before hadronization \rightarrow spin info in decay products.
- top/antitop spin correlation:

 $A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$

• depends on qq/gg fraction.

- opening angle between leptons ($\Delta \varphi$) carries information about spin correlation.

Spin correlation

helicity basis (Phys. Rev. D 81, 074024 (2010)):

- along top/antitop direction in C.M. reference.
- $A^{SM}_{helicity} = 0.31$

maximal basis (arxiv:hep-ph/0412097):

• maximal correlation from gluon fusion.

√s = 7 TeV, 2.1 fb⁻¹ di-lepton

- The $\Delta \phi$ distribution is fit with two signal samples: w/ SM spin correlation (SM, solid line) and w/o spin correlation (UC, dashed line) :
- f_{SM} is the fitted fraction of SM sample N_{meas} = $f_{SM} \cdot N_{SM} + (1 - f_{SM}) \cdot N_{UC}$
- $A_{basis}^{meas} = A_{basis}^{SM} \cdot f_{SM}$

- $f_{SM} = 0 \rightarrow$ no correlation - $f_{SM} > 1 \rightarrow$ correlation > SM prediction

$$f_{SM} = 1.30 \pm 0.14(stat.)_{-0.22}^{+0.27}(syst.)$$

$$A_{\text{helicity}} = 0.40 \pm 0.04(stat.)_{-0.07}^{+0.08}(syst.)$$

$$A_{\text{maximal}} = 0.57 \pm 0.06(stat.)_{-0.10}^{+0.12}(syst.)$$

Spin correlation – fit

The result (f_{SM} ~1) is compatible with SM prediction. First observation of spin correlation. 5.1 σ significance wrt no-correlation hypothesis.

Electroweak couplings

- Studies of top pairs produced in association with vector bosons allow to test the electroweak coupling in the SM.
- Anomalous couplings are symptoms of bSM physics.

• First step: measurements of inclusive $t\bar{t} + \gamma/Z$ cross-sections.

 $Vs = 7 \text{ TeV}, 1.04 \text{ fb}^{-1}$ single lepton

$t\bar{t}\gamma$ cross-section

 $vs = 7 \text{ TeV}, 4.7 \text{ fb}^{-1}$

Search for $t\bar{t}Z$ events in 3 leptons final state:

- 1 from leptonic W decay
- 2 same-sign, same flavor from Z decay

Search for $t\bar{t}Z$ production

exp. signal: $0.85 \pm 0.04(stat.) \pm 0.14(syst.)$ background: $0.28 \pm 0.05(stat.) \pm 0.14(syst.)$ observed: 1

 $O_{t\bar{t}Z}$ < 0.71 pb @ 95% C.L.

SM @ NLO: $\sigma_{t\bar{t}Z} = 0.14 \text{ pb}$

F Rubbo - Top Properties at ATLAS -

• The large data samples delivered by LHC allow for precision measurements in the top sector.

• Presented measurements of top pair properties: charge asymmetry, spin correlation, ttγ cross-section and the search for ttZ production.

• All measurements are compatible with SM predictions. Some expected effects are already observed with good sensitivity: 5.1σ spin correlation and 2.7σ $t\bar{t}$ + photon.

• Systematic uncertainties are quickly becoming the main limitation for precise measurements. Large improvements are on the way.

• Cross section and charge asymmetry measurements will benefit from 8 TeV large dataset.

• Updates with full 7 TeV dataset and new measurements at 8 TeV coming soon...

Backup

Spin correlation

16

 $tt\gamma$ cross-section

fit parameters

fit parameter	fit value with statistical uncertainty		
hadron fakes in the e +jets channel	21	± 6	events
hadron fakes in the μ +jets channel	28	± 8	events
electrons faking photons from $t\bar{t}$ in the e +jets channel	7.4	± 1.7	events
electrons faking photons from $t\bar{t}$ in the μ +jets channel	10.9	± 2.2	events
$t\bar{t}\gamma$ background in the <i>e</i> +jets channel	0.2		events
$t\bar{t}\gamma$ background in the μ +jets channel	0.4		events
non- $t\bar{t}$ background in the e +jets channel	6.7		events
non- $t\bar{t}$ background in the μ +jets channel	3.8		events
total number of background events	78	± 14	events
total number of signal events	46	± 12	events
$t\bar{t}\gamma$ signal (before selection and acceptance cuts)	2100	± 500	events

F.Rubbo - Top Properties at ATLAS -