Inclusive searches for squarks and gluinos with the ATLAS detector

Alex Kastanas On behalf of the ATLAS collaboration

University of Bergen

LHC Physics 2013 May 15th 2013

Introduction

- An overview of ATLAS analyses targeting strong production of SUSY particles using LHC 2012 8 TeV data.
- All presented analyses look at R-parity preserving models
 → MET signature
- Gluino and squark production, decay into quarks \rightarrow jet signature
- Analyses presented target the following final states:
 - Z production [6 fb⁻¹]
 - 1 or more taus $[21 \text{ fb}^{-1}]$
 - 2 same sign leptons [21 fb⁻¹]
 - 0 lepton (2-6 jets) [20 fb⁻¹]
 - 0 lepton (7-10 jets) [20 fb⁻¹]

Z, jets and MET

Targeting gluino production with decay into higgsinolike neutralino. Final decay to LSP though Z channel.

 $\widetilde{g} \ \rightarrow \ q \ \widetilde{q} \ \chi_1^{\ 0} \ \rightarrow \ q \ q' \ Z \ \widetilde{G}$

Trigger: Dilepton

Selection

• Two leptons with invariant mass within Z mass window.

 \bullet Jet heavy SR: cuts on MET and jet $\mathsf{P}_{\scriptscriptstyle\mathsf{T}}$'s

 \bullet More inclusive SR: lighter MET cut and $\rm H_{\scriptscriptstyle T}.$

Backgrounds

- Z + jets: MET from instrumental effects, fully data driven
- WW, tt, Wt, Z/gamma $\rightarrow \tau\tau$: Data driven correction factor to MC.

	SR1	SR2
MET	> 200 GeV	> 140 GeV
$\mathbf{Jet} \mathbf{P}_{_{\mathbf{T}}}$	80/40/40 GeV	-
H _T	-	> 300 GeV

Results

Data and background expectation in agreement, no excess.

Exclusion limits set for two GGM planes

Parameters: $M_1 = M_2 = 1$, m(q) = 1.5 TeV, tan(β) = 1.5 or 40

Exclusion of gluino masses between 680-820 GeV are excluded, for χ_1^{0} masses between 160-720 GeV.

	Expected	Observed
SR1 ee	$3.1 \pm 1.1 \pm 0.5$	5
SR1 µµ	$3.2 \pm 1.3 \pm 0.4$	5
SR2 ee	$55.9 \pm 3.9 \pm 8.4$	66
SR2 μμ	$59.5 \pm 4.4 \pm 10.4$	61

1 or \geq 2 taus, jet and MET

ATLAS-CONF-2013-026

Events with taus produced in neutralino or chargino decays through the stau decay channel.

Trigger: Jet + MET

- Selection
- $P_{\tau}^{jet1} > 130 \text{ GeV}, P_{\tau}^{jet2} > 30 \text{ GeV}$
- MET > 150 GeV
- = 1 medium tau $P_{\tau} > 30 \text{ GeV}$ or \geq 2 loose taus P_T > 20 GeV
- $\Delta \phi$ (jets, MET) and MET/m_{eff} cuts
- Final cuts on $M_{\tau}(M_{\tau}^{1}+M_{\tau}^{2})$ and H_{τ}

Main backgrounds

- W+jets, top, Z+jets
 - data-driven correction on MC prediction
- Multijet contributions estimated from data.

May 16th 2013

Alex Kastanas (University of Bergen)

H₋

Results

Good agreement between data and background expectation, no excesses observed.

Exclusion contours produced in the context of the GMSB, mSUGRA/cMSSM ("Higgs-aware") and nGM models.

- GMSB (M_{mess} =250 TeV, N_5 =3,µ>0, C_{grav} =1): limit on SUSY breaking scale of 54 TeV for all tan(β), 70 TeV for tan(β) >50
- mSUGRA/cMSSM(tan(β)=30, A₀= -2m₀, μ >0, compatible with a 126 GeV Higgs): m₀ < 860 GeV for low m_{1/2} and m_{1/2} < 650 GeV for low m₀
- nGM (m_q << m_g,µ=400 GeV): exclusion of gluino masses below 1140 GeV

	Expected	Observed
1 tau	4.0 ± 1.5 ± 1.3	3
2 tau GMSB	7.2 ± 1.3 ± 1.6	5
2 tau nGM	3.5 ± 1.1 ± 1.9	1

2 SS leptons, jet and MET

Searching for events with two isolated same sign leptons (ee, eµ, µµ).

- Due to majorana nature of gluinos there is significant production of SS lepton pairs → SM background suppression.
- A versatile analysis sensitive to long gluino and squark decay chains involving leptons.
- The analysis is presented in Mirjam Fehling's talk in this session.

MSUGRA/CMSSM ("Higgs-aware") model

Gluinos with masses below 1000 GeV excluded.

Gluino-squark model

Gluino masses up to 750-800 GeV excluded for χ_1^{0} masses below 450 GeV.

2 SS leptons, jet and MET

Gluino-squark model

Gluino masses up to 1000-1100 GeV excluded for χ_1^0 below 650 GeV.

Direct squark model

Squark masses up to 600-660 GeV excluded for χ_1^0 below 380 GeV.

0-lepton (2-6 jets)

Targeting gluino and squark production, decaying to χ_1^{0} with jet production.

- Trigger: Jet + MET
- Selection
- MET > 160 GeV
- P_T(jet 1) > 130 GeV, P_T(jet 2-6) > 60 GeV
- Inclusive channels: $\geq 2, \geq 3, ..., \geq 6$ jets
- e/μ veto, minimum $\Delta \phi$ (jets, MET) cut
- final Signal Region (SR) cuts on:
 - MET/m_{eff}(N leading jets in each SR) and m_{eff} (all jets w/ P_{T} > 40 GeV)
 - Up to three cut levels per SR.

Backgrounds

Data-driven estimation of all primary backgrounds.

- CR for each background and each SR
 - Defined as the SR with additional cuts
- Transfer factor between CR and SR obtained from MC (estimated from data for multijets)
- Estimate SR contribution from CR contents in data and transfer factor.
- Final determination of backgrounds from a fit over SR and corresponding CR's.

Process	CR definition					
Multijets	Reversed QCD rejection cuts					
Z + jets	Gamma + jets					
W + jets	30 < m __ (I, MET)	b-tag veto				
Тор	< 100 GeV	b-tag required				

Results

Good agreement between data and expected background.

Exclusion contours for mSUGRA/cMSSM ("Higgs-aware") and simplified models.

- Values of m_{1/2} below 300 GeV excluded.

May 16th 2013

0-lepton (7-10 jets)

- Target similar as in the previous analysis, **but** *larger jet multiplicity* SR's, targeting *longer decay chains* possibly including 3rd generation squarks. **Trigger:** Multijets
- Two selection streams:
- Multi-jets + flavour SR's:
 - Jet P_T (multiplicity): P_T > 50 GeV (=8, =9, ≥10) or P_T > 80 GeV (=7, ≥8)
 - SR's further split by b-tag multiplicity (=0, =1 , \geq 2)
- Multi-jets + Σm_i SR's:
 - Jet P_{T} (multiplicity): P_{T} > 80 GeV (≥8, ≥9, ≥ 10)
 - Selected jets used as seed for constructing composite fat jets ($\Delta R = 1.0$)
 - Cut on sum of resulting jet invariant masses, for jets w/ P_{τ} > 100 GeV (340 and 420 GeV cuts)
- Final cut on MET/sqrt(H_T) > 4 GeV^{1/2}

Backgrounds

Multijets and top (hadronic decays) production

- Data-driven estimation: Use the fact that the MET/sqrt(HT) distribution invariant w.r.t. jet multiplicity.
- CR uses an orthogonal MET/sqrt(H_T) < 1.5 GeV^{1/2} cut.
- From data obtain transfer factor between CR and SR.
 - Use region with lower multiplicity of jets than SR's.
- Use this to extrapolate from CR to SR.

W+jets, tt, Z+jets (semi-leptonic decays)

- Primarily from hadronic tau decays or unidentified leptons.
- MC distributions normalised to data in control regions.
- Control regions same as the SR but require a lepton
 - leptons treated as jets, simulating a hadronic tau decay.
 - Additional selection on m_{τ} , MET and MET/sqrt(HT).
- Normalisation of MC determined by fit to data in the CR's.

Results

Good agreement between data and expected background, no excess observed.

Exclusion contours for mSUGRA/CMSSM ("Higgs-aware") and simplified models.

• Gluino masses lower than 1100 GeV are excluded

Simplified models also considered.

 Gluino-squark model: for neutralino masses below 350 GeV gluino masses below 1100 GeV are excluded.

May 16th 2013

Conclusions and summary

Presenting the latest results on inclusive gluino and squark searches with ATLAS.

- No evidence of SUSY seen in the 2012 dataset, analyses have placed limits on SUSY cross-section and constrained model parameters.
- Most analyses have moved to the complete 2012 8 TeV dataset.
- Data analysis still continuing, more to come!

All ATLAS supersymmetry results can be found here:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

List of notes presented

I ATLAS-CONF-2012-152

"Search for supersymmetry in final states with jets, missing transverse momentum and a Z boson at sqrt(s) = 8 TeV with the ATLAS detector."

II ATLAS-CONF-2013-026

"Search for Supersymmetry in Events with Large Missing Transverse Momentum, Jets, and at Least One Tau Lepton in 21 fb–1 of sqrt(s) = 8 TeV Proton-Proton Collision Data with the ATLAS Detector."

III ATLAS-CONF-2013-007

"Search for strongly produced superpartners in final states with two same sign leptons with the ATLAS detector using 21 fb-1 of proton-proton collisions at sqrt(s)=8 TeV."

IV ATLAS-CONF-2013-047

"Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 20.3 fb–1 of s $\sqrt{=8}$ TeV proton-proton collision data"

V ATLAS-CONF-2013-054

"Quest for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 20.3/fb of 8 TeV proton-proton collisions"

Backup material

0-lepton (2-6 jets) – SR details

ATLAS-CONF-2013-047

0-lepton (2-6 jets) - SR details

0-lepton (2-6 jets) – SR counts

Signal Region	A-loose	A-medium	B-medium	B-tight	C-medium	C-tight			
MC expected events									
Diboson	428.6	15.0	4.3	0.0	25.5	0.0			
Z/γ^* +jets	2044.4	83.1	20.6	2.3	119.4	2.6			
W+jets	2109.0	58.8	16.4	2.1	88.7	1.0			
$t\bar{t}(+EW) + single top$	785.9	8.2	2.0	0.3	45.9	0.3			
		Fitted backg	ground events						
Diboson	430 ± 190	15 ± 7	4.3 ± 2.0	_	26 ± 11	_			
Z/γ^* +jets	1870 ± 320	57 ± 11	16 ± 5	0.2 ± 0.5	80 ± 29	$0.0^{+0.6}_{-0.0}$			
W+jets	1540 ± 260	42 ± 11	10 ± 4	1.6 ± 1.2	55 ± 18	0.7 ± 0.9			
$t\bar{t}(+EW) + single top$	870 ± 180	7.8 ± 2.8	2.2 ± 2.0	0.6 ± 0.7	50 ± 11	0.9 ± 0.9			
Multi-jets	33 ± 33	—	0.1 ± 0.1	—	_	_			
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4	210 ± 40	1.6 ± 1.4			
Observed	5333	135	29	4	228	0			
$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	66.07	2.52	0.73	0.33	4.00	0.12			
S_{obs}^{95}	1341.2	51.3	14.9	6.7	81.2	2.4			
S ⁹⁵ _{exp}	$1135.0^{+332.7}_{-291.5}$	$42.7^{+15.5}_{-11.4}$	$17.0^{+6.6}_{-4.6}$	$5.8^{+2.9}_{-1.8}$	$72.9^{+23.6}_{-18.0}$	$3.3^{+2.1}_{-1.2}$			
$p_0(Z_n)$	0.45 (0.1)	0.27 (0.6)	0.50 (0.0)	0.34 (0.4)	0.34 (0.4)	0.50 (0.0)			

0-lepton (2-6 jets) – SR counts

Signal Region	D	E-loose	E-medium	E-tight					
MC expected events									
Diboson	2.0	5.5	1.7	0.0					
Z/γ^* +jets	8.5	19.6	6.3	1.9					
W+jets	4.8	23.1	5.2	0.8					
$t\bar{t}(+EW) + single top$	5.0	67.3	16.8	1.5					
	Fitted back	ground even	ts						
Diboson	2.0 ± 2.0	5.5 ± 2.1	1.7 ± 0.8	_					
Z/γ^* +jets	3.8 ± 2.5	12 ± 7	2.9 ± 2.6	0.4 ± 0.6					
W+jets	3.3 ± 2.5	18 ± 7	4.9 ± 2.7	0.7 ± 0.5					
$t\bar{t}(+EW) + single top$	5.8 ± 2.1	76 ± 19	20 ± 6	1.7 ± 1.4					
Multi-jets	_	1.0 ± 1.0	_	—					
Total bkg	15 ± 5	113 ± 21	30 ± 8	2.9 ± 1.8					
Observed	18	166	41	5					
$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	0.77	4.55	1.41	0.41					
S_{obs}^{95}	15.5	92.4	28.6	8.3					
S_{exp}^{95}	$13.6^{+5.1}_{-3.5}$	$57.3^{+20.0}_{-14.4}$	$21.4^{+7.6}_{-5.8}$	$6.5^{+3.0}_{-1.9}$					
$p_0(Z_n)$	0.32 (0.5)	0.03 (1.9)	0.14 (1.1)	0.22 (0.8)					

0-lepton (2-6 jets) - More grids

0-lepton (2-6 jets) - More grids

0-lepton (7-10 jets) – SR details

ATLAS-CONF-2013-054

Multijet + flavour stream, $P_{\tau} > 50 \text{ GeV}$

May 16th 2013

0-lepton (7-10 jets) – SR details

ATLAS-CONF-2013-054

Multijet + flavour stream, $P_{\tau} > 50 \text{ GeV}$

0-lepton (7-10 jets) – SR details

ATLAS-CONF-2013-054

Signal region		8j50		9j50			10j50
<i>b</i> -jets	0	1	≥ 2	0	1	≥ 2	—
Observed events	40	44	44	5	8	7	3
Total events after fit	35 ± 4	40 ± 10	50 ± 10	3.3 ± 0.7	6.1 ± 1.7	8.0 ± 2.7	1.37 ± 0.35
Fitted tī	2.7 ± 0.9	11.8 ± 3.0	23.0 ± 5.0	0.36 ± 0.18	1.5 ± 0.5	3.2 ± 1.1	$0.06^{+0.09}_{-0.06}$
Fitted W+jets	$2.0^{+2.6}_{-2.0}$	$0.62^{+0.81}_{-0.62}$	$0.20^{+0.28}_{-0.20}$	-	$0.24^{+0.65}_{-0.24}$	-	-
Fitted others	$2.9^{+1.8}_{-1.8}$	$1.7^{+1.5}_{-1.2}$	$2.8^{+2.3}_{-2.0}$	0.03 ± 0.03	0.38 ± 0.25	$0.40^{+0.60}_{-0.24}$	0.08 ± 0.08
Total events before fit	36	48	59	3.4	6.6	8.9	1.39
<i>tī</i> before fit	3.5	15	30	0.41	1.8	4	0.08
W+jets before fit	2.9	1.0	0.29	-	0.40	-	-
Others before fit	2.4	1.8	2.8	0.03	0.34	0.4	0.08
Multi-jets	27 ± 3	30 ± 10	26 ± 10	3.0 ± 0.6	4.0 ± 1.4	4.4 ± 2.2	1.23 ± 0.32
N ^{95%} _{BSM} (exp)	16	23	26	5	7	8	4
N ^{95%} _{BSM} (obs)	20	23	22	7	9	7	6
$\sigma_{\text{BSM,max}}^{95\%} \cdot A \cdot \epsilon \text{ (exp) [fb]}$	0.8	1.2	1.3	0.26	0.36	0.40	0.19
$\sigma_{\text{BSM,max}}^{95\%} \cdot A \cdot \epsilon \text{ (obs) [fb]}$	0.97	1.1	1.1	0.34	0.43	0.37	0.29
p_0	0.24	0.5	0.7	0.21	0.28	0.6	0.13
Significance (σ)	0.7	-0.02	-0.6	0.8	0.6	-0.28	1.14

0-lepton (7-10 jets) – SR counts

Signal region		7j80			8j80	
<i>b</i> -jets	0	1	≥ 2	0	1	≥ 2
Observed events	12	17	13	2	1	3
Total fitted events	11.0 ± 2.2	17 ± 6	25 ± 10	0.9 ± 0.6	1.5 ± 0.9	3.3 ± 2.2
Fitted tī	$0.00^{+0.26}_{-0.00}$	5.0 ± 4.0	12 ± 9	$0.10^{+0.14}_{-0.10}$	$0.32^{+0.67}_{-0.32}$	$1.5^{+1.9}_{-1.5}$
Fitted W+jets	$0.07^{+0.38}_{-0.07}$	$0.29^{+0.37}_{-0.29}$	-	-	-	-
Fitted others	$1.9^{+1.1}_{-0.9}$	$0.71_{-0.25}^{+0.31}$	$2.6^{+1.7}_{-1.1}$	0.02 ± 0.02	0.02 ± 0.02	$0.32^{+0.36}_{-0.21}$
Total events before fit	11.7	16	23	0.8	1.8	3.3
<i>tī</i> before fit	0.34	4	10	0.08	0.6	1.5
W+jets before fit	0.46	0.29	-	-	-	-
Others before fit	1.8	0.89	3.0	0.02	0.02	0.35
Multi-jets	9.1 ± 1.6	11 ± 4	10 ± 4	0.75 ± 0.56	1.2 ± 0.5	1.4 ± 1.0
N ⁹⁵ _{BSM} (exp)	10	17	14	4	4	6
N ⁹⁵ _{BSM} (obs)	10	16	12	5	3.5	6
$\sigma_{\text{BSM,max}}^{95\%} \cdot A \cdot \epsilon \text{ (exp) [fb]}$	0.5	0.8	0.7	0.18	0.18	0.31
$\sigma_{\text{BSM,max}}^{95\%} \cdot A \cdot \epsilon \text{ (obs) [fb]}$	0.5	0.8	0.6	0.24	0.17	0.31
p_0	0.5	0.6	0.8	0.19	0.6	0.5
Significance (σ)	0.05	-0.14	-1.0	0.9	-0.28	-0.06

Signal region	8j50 Signal region		Signal region	9j50		10j50	
M_J^{Σ} [GeV]	340	420	M_I^{Σ} [GeV]	340	420	340	420
Observed events	69	37		10	0		
Total events after fit	75 ± 19	45 ± 14	Observed events	13	9	1	1
Fitted tī	17 ± 11	16 ± 13	Total events	17 ± 7	11 ± 5	$3.2^{+3.7}_{-3.2}$	2.2 ± 2.0
Fitted W+jets	$0.8^{+1.3}_{-0.8}$	$0.4^{+0.7}_{-0.4}$	tī	5 ± 4	3.4+3.6	0.8+0.8	0.6+0.9
Fitted others	$5.2^{+4.0}_{-2.5}$	$2.8^{+2.9}_{-1.6}$	W+jets		-3.4	-0.8	-0.6
Total events before fit	85	44	W +jets			-	-
<i>tī</i> before fit	27	14	Others	$0.58^{+0.34}_{-0.33}$	$0.39_{-0.30}^{+0.32}$	0.12 ± 0.12	0.06 ± 0.06
W+jets before fit	0.8	0.4	Multi-jets	12 ± 4	7.0 ± 2.3	$2.3^{+3.6}_{-2.3}$	$1.6^{+1.8}_{-1.6}$
Others before fit	5	2.8	N195% (orres)	12	11	5	5
Multi-jets	52 ± 15	27 ± 7	N _{BSM} (exp)	15	11	5	5
N ^{95%} _{BSM} (exp)	40	23	N ^{95%} _{BSM} (obs)	11	10	4	4
N ^{95%} _{BSM} (obs)	35	20	$\sigma_{\text{BSM,max}}^{95\%} \cdot A \cdot \epsilon \text{ (exp) [fb]}$	0.7	0.5	0.23	0.23
$\sigma_{\mathrm{BSM,max}}^{95\%} \cdot A \cdot \epsilon \text{ (exp) [fb]}$	1.9	1.1	$\sigma_{\text{PSM max}}^{95\%} \cdot A \cdot \epsilon \text{ (obs) [fb]}$	0.5	0.5	0.2	0.2
$\sigma_{\text{BSM,max}}^{95\%} \cdot A \cdot \epsilon \text{ (obs) [fb]}$	1.7	1.0	Bowi,max	0.7	0.6	0.0	0.7
p_0	0.60	0.7	<i>P</i> 0	0.7	0.6	0.8	0.7
Significance (σ)	-0.27	-0.6	Significance (σ)	-0.6	-0.34	-0.8	-0.6