

Searches for resonances at LHC and Tevatron

Laurent VACAVANT on behalf of the ATLAS, CDF, CMS and D0 collaborations

Introduction

- Motivations for BSM physics introduced in previous talk (A. Weiler)
- New massive resonances are predicted by many BSM scenarios, in particular since many have extended gauge sectors:
 - Sequential SM Z' and W' (motivated e.g. by Little Higgs models)
 - Z' from GUT-inspired theories (E6, SO(10), ...)
 - Extra dimensions: Randall-Sundrum KK gravitons, KK gauge bosons
 - Technicolor, ...
- Experimental strategy:
 - generic signatures \rightarrow interpreting results in terms of models
 - looking for the highest energy: most results today from LHC @ 8 TeV
 - challenges: understand objects (trigger, efficiency, resolution) @ very high p_T and tails of SM backgrounds
- Focus of this talk: heavy (~TeV) resonances, with II/ jj/ VV final states
 - non-resonant searches: next talk by T. Bose
 - long-lived particles: this afternoon, by S. Haug
 - ttbar-related final states: talk tomorrow, by J. Pilot
 - BSM Higgs: Monday, by M. Flechl
 - parallel talks: this afternoon and Friday afternoon
 - **posters**: J. Coggeshall (room A), M. Davies (room A), M. Vincter (room C)
 - apologies for the analyses not covered here

Laurent Vacavant

Models: SSM Z', RS graviton, GU E6, minimum walking technicolor,...

<u>Search:</u> looking for 'bumps' on top of (tails of) SM Drell-Yan background in **m(ll)** distribution

clean signature: 2 high-p_T leptons (of opposite charge)
triggering on one of them

<u>µµ vs ee:</u>

- low µ fake level vs jet background for e
- easier charge ID for **µ**
- $\gtrsim 2 \times$ better energy/mass resolution for **e**

Highest dielectron invariant mass event in ATLAS: m(ee)=1.54 TeV $E_T(e_1)=588 \text{ GeV}, E_T(e_2)=584 \text{ GeV}$

µµ analysis in a nutshell:

- single-µ triggers
 - CMS: p_T>40 GeV, |η|<2.1
 - ATLAS: $p_T > 24 + iso||36 \text{ GeV}, |\eta| < 2.7$
- \bullet combined μ (tracker+MS), quality cuts, muon track isolation
 - CMS: p_T>45 GeV
 - ATLAS: p_T >25 GeV, $|\eta|$ <2.4
- 2 muons of opposite charge

ee analysis in a nutshell:

- trigger on 2 objects:
 - CMS: di-e trigger (E_T>35 GeV)
 - ATLAS: di-V trigger (E_T>35,25 GeV)
- 2 offline electrons: q. cuts, track (CMS) or calo (ATLAS) isolation
 - CMS: E_T >45 GeV, $|\eta|$ <2.5
 - ATLAS: E_T >45(30) GeV, $|\eta|$ <2.47
- no charge requirement

Laurent Vacavant

Physics background estimation:

- irreducible Z/χ^* Drell-Yan: Monte-Carlo
- ttbar, tW, diboson: Monte-Carlo, cross-checked with opposite flavor analysis in CMS
- normalized to NNLO cross-sections
- overal normalization with data in Z peak region

Instrumental background: jets faking leptons

- data-driven estimation
- for ee: fake rates from loose selection extrapolated to high E_T , normalized in data CR
- for μμ: reversed isolation

Statistical analysis:

- Different techniques for ATLAS & CMS, in both cases: cancel integrated
- luminosity uncertainty and reduce uncertainties on acceptance, trigger and lepton effi.
- Differences in signal modeling: narrow resonance à la Z'_{Ψ}
- for CMS versus full shape of SSM Z' for ATLAS (more conservative)
- Bayesian limit setting procedure
- Main sources of systematics:
 - signal: normalization & lepton efficiency
 - background: PDF choice & variation, jet background (for ee)

- similar results obtained by ATLAS with same amount of data
- illustration of Z' signals (and impact of resolution on high- $p_T e/\mu$)
- \rightarrow no evidence for a signal with ATLAS either

Laurent Vacavant

LHCP2013, Searches for resonances at LHC and Tevatron, May 16 2013

Highest mass dijet event with central jets: m(jj) = 5.15 TeV

Models: excited quarks q*, SSM W'/Z', RS graviton, E6, string, axigluon,...

Search: looking for 'bumps' on top of the large QCD background in m(jj)

Higher BR than for dileptons, but: large bkgd, lower resolution, trigger threshold. Main sources of systematic uncertainties: PDF & JES

ATLAS 13 fb⁻¹ @ 8 TeV [CONF-2012-148]

CMS 20 fb⁻¹ @ 8 TeV [EXO-12-059]

Laurent Vacavant

ATLAS versus CMS analysis in a nutshell:

- central 1-jet triggers $E_T \sim 350$ GeV vs $H_T/m(jj)$ at HLT
- anti- $k_T R=0.6$ jets versus wide jets (R~1.1)
- in both cases:
 - rapidity cuts to enhance central scattering
 - selection requires m(jj) \gtrsim 1 TeV

<u>Search:</u>

fit m(jj) data distribution with smooth form:
 ⊕ no MC QCD uncertainties, reduced sensitivity to JES&lumi,
 ⊖ uncertainties on fit form, no sensitivity to smooth changes (CI)

$$f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x} \qquad x \equiv m_{jj} / \sqrt{s}$$

- binned likelihood fit: χ^2 compatible with bkgd
- ATLAS: BumpHunter for excess of any width
- no signal found

Exclusion:

- bayesian approach
- with Gaussian-like signals
- ATLAS: q* + model-independent approach
- \bullet CMS: many models, separation of q/g final states

Laurent Vacavant

Note:

- high p_T threshold required at LHC for triggers on (single) jets
- therefore mass region below ~1 TeV is not probed by current analyses
- \bullet searches from Tevatron were still relevant in this region not so long ago
- \rightarrow specific strategies devised at LHC to keep access to this region

CMS: data scouting (since end of 2011) also data parking (since 2012)

ATLAS: no special trigger in 2011, also delayed triggers (since 2012)

More specific searches: decays to bb and bg

Laurent Vacavant

CMS 20 fb⁻¹ @ 8 TeV [EXO-12-023]

<u>Models</u>: extended gauge bosons $V' \rightarrow V_1 V_2$, LSTC, KK...

Search: looking for resonances on top of SM diboson background in m(VV)

Typically less background than dijets/dileptons. Less branching too... Background modeling: Monte Carlo with data-driven normalizations for most

Search for heavy resonances: Dibosons (WZ)

The final VV invariant mass distribution:

Search for heavy resonances: Dibosons (ZZ)

ATLAS 7 fb⁻¹ @ 8 TeV [CONF-2012-150]

Search for resonant ZZ \rightarrow II qq:

- 2 lepton channels: µµ & ee
- triggers on single leptons
- jets: 2 kinematical regimes
 - low mass: two anti-kT R=0.4 jets
 - high mass: single jet

Search for heavy resonances: Dibosons (ZZ)

ATLAS 7 fb⁻¹ @ 8 TeV [CONF-2012-150]

Background modelling: fit to data with same form than for dijets. Uses BumpHunter as well.

 $\frac{95\%~CL~limits:}{m(G)} > 850~GeV~$ (exp. 870 GeV) for $k/M_{Pl}{=}1.0$

(CMS 5 fb^{-1} @ 7 TeV: 720 GeV [PLB 718,2,307 (2009)])

NB: here "bulk RS" model, different from RS1 in page 7

Search for lighter resonances: heavy fermions

See-saw mechanism for v masses:

- Type III: 2 fermionic triplets
- N⁺, N⁻, N⁰ (~degenerated in mass)
- Br(N⁺ \rightarrow Zl⁺), Br(N⁰ \rightarrow W⁺l⁻) Signature:
- Z→II, plus 2 leptons
- full reconstruction of N^+

ATLAS 5.8 fb⁻¹ @ 8 TeV [CONF-2013-019]

Exclusion plane (m,BR) in the CONF note.

Search for heavy resonances: W'→tb

ATLAS 14 fb⁻¹ @ 8 TeV [CONF-2013-022]

• W' \rightarrow tb, W'₁ or W'_R

NEW!

- leptophobic W', 3rd gen.
- XS: Duffty, Sullivan [PRD 86, 075018 (2012)]
- 0.5 < m(W') < 3 TeV
- 2 flavors of lepton
- 2||3 jets, 1||2 b-tags
- BDT with 14 variables: m_{tb} , $p_T(t)$, $\Delta R(l,b_2)$, H_T , m_{bb}

Expected BDT outputs:

Search for heavy resonances: W'→tb

Laurent Vacavant

Conclusion

- Building on the searches done at the Tevatron with CDF and D0, ATLAS and CMS at LHC are now exploring the energy frontier
- At the end of the 1st LHC run, and in particular thanks to the 8 TeV data (~20 fb⁻¹ per experiment), many searches for exotic resonances are reaching the multi-TeV region. More information:
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
- So far no discovery unfortunately... A few (95%CL) limits to take away:
 - SSM Z': m(Z') > 2.96 TeV (dileptons)
 - RS G (k/M_{Pl}=0.1): m(G) > 2.47 TeV (dileptons)
 - excited quarks: $m(q^*) > 3.84$ TeV (dijets)
- Prospects:
 - finish the analyses with LHC Run 1 data !
 - the next LHC run at 13/14 TeV will significantly increase the reach for these searches.

Backup

Laurent Vacavant LHCP2013, Searches for resonances at LHC and Tevatron, May 16 2013

Highest dimuon invariant mass event in ATLAS: $m(\mu\mu)=1.84$ TeV $p_T(\mu_1)=653$ GeV, $p_T(\mu_2)=646$ GeV

Laurent Vacavant

- ATLAS analysis in a nutshell:
- central 1-jet triggers E_T~350 GeV
- \geq 2 anti-k_T R=0.6 jets with |y_j|<2.8,
- $|y^*| < 0.6$ and m(jj) > 1 TeV
- \rightarrow min jet p_T~150 GeV

CMS analysis in a nutshell:

- trigger: loose jet L1, HLT: H_T >650 GeV || m(jj)>750 GeV
- PFjets combined in wide-jets (R~1.1)
- $|\Delta\eta|$ < 1.3 and m(jj) > 0.89 TeV

<u>Search:</u>

• fit m(jj) data distribution with smooth form: \oplus no MC QCD uncertainties, reduced sensitivity to JES&lumi, \ominus uncertainties on fit form, limited sensitivity to smooth changes (e.g. contact interation)

$$f(x) = p_1(1-x)^{p_2} x^{p_3 + p_4 \ln x} \qquad x \equiv m_{jj} / \sqrt{s}$$

- binned likelihood fit: $\chi 2$ compatible with bkgd
- ATLAS: BumpHunter for excess of any width
- no signal found

Exclusion:

- bayesian approach
- with Gaussian-like signals

• ATLAS: q* + modelindependent approach

• CMS: many models, separation of q/g final states

Important note:

- high p_T threshold required at LHC for triggers on (single) jets
- therefore mass region below ~1 TeV is not probed by current analysis
- \rightarrow searches from Tevatron were still relevant in this region not so long ago

Model	Observed 95% Tevatron exclusion	C.L. excluded masses (GeV): LHC exclusion
Excited quark q*	[260, 870] (CDF)	[1000, 3840] (ATLAS)
E6 diquark D	[290, 630] (CDF)	[1200, 4750] (CMS)
Axigluon/coloron	[260,1250] (CDF)	[1200,3600]+[3900,4080](CMS)
W'	[280, 840] (CDF†)	[1200,2290] (CMS)
Ζ'	[320, 740] (CDF‡)	[1200,1680] (CMS*)
DF 1 fb ⁻¹ @ 1.96 TeV [PRD 79, 112002 (2009)]		CMS 20 fb ⁻¹ @ 8 TeV [EXO-12-059] ATLAS 13 fb ⁻¹ @ 8 TeV [CONF-2012-

†: more stringent limit (1 TeV) from D0 W' to electron analysis [PRL 100, 031804 (2008)]

‡: more stringent limit (923 GeV) from CDF Z' to electrons analysis [PRL 99, 171802 (2007)]

*: more stringent limit from LHC dilepton analyses as we saw

bo

NEW!

q

Laurent Vacavant LHCP2013, Sear