SPONSORED BY THE

Federal Ministry of Education and Research

Top-Quark-Pair Cross Section Measurements at CMS

inclusive $\sigma(t\bar{t})$

additional jet activity

differential $\sigma(t\bar{t})$ $t\bar{t}$ +

tt + bb

 α_s from $\sigma(t\bar{t})$

Martin Görner, University of Hamburg for the CMS Collaboration

> LHCP 2013, Barcelona 13th - 18th May

Top Quark Pairs

tt Production

0000

- at the LHC mainly via gluon-gluon fusion (~80% at $\sqrt{s}=7/8$ TeV)

0000

00000

tt Decay

- in Standard Model ~100% t→bW, W decay defines final state

- $\sqrt{s}=7$ TeV: ~ 1.0 M tt pairs
- $\sqrt{s}=8$ TeV: ~ 5.5 M tt pairs

$\sigma(t\bar{t})$ from Theory

- full NNLO+NNLL predictions available

Collider	$\sigma_{_{tot}}$ [pb]	scales [pb]	pdf [pb]			
LHC 7 TeV	172.0	+4.4 -5.8	+4.7 -4.8	precia	+	inclusive cross section
LHC 8 TeV	245.8	+6.2 -8.4	+6.2 -6.4	scision		measurements

0000

(Czakon, Fiedler, Mitov, arXiv:1303.6254)

LHCP 2013 Barcelona, 15.05.2013

- Martin Görner, University of Hamburg -

Overview: $\sigma(t\bar{t})$ at $\sqrt{s} = 7 \text{ TeV}$

LHCP 2013 Barcelona, 15.05.2013

- Martin Görner, University of Hamburg -

Inclusive Cross Section (e/µ+jets)

 ∞

N

8 TeV

Selection

- 1 isolated high p_{τ} lepton & \geq 4 high p_{τ} central jets
- jet assigned to leptonic top identified as b jet

Cross Section

- lepton b jet association via χ^2 (using m_{top} & m_w)
- N(tt) from 3 component template fit to m(lb)
 - tt (simulation)
 - QCD multijet (from sideband region with non-isolated leptons)
 - other backgrounds (simulation)
- combination of channels: BLUE

Main Systematic Uncertainties

 jet energy scale, b-tagging efficiency, matching & Q² scale

 $\sigma_{t\bar{t}}$ (combined) = 228.4 ± 9.0 (stat.) $^{+29.0}_{-26.0}$ (syst.) ± 10.0 (lumi) pb

LHCP 2013 Barcelona, 15.05.2013

- Martin Görner, University of Hamburg -

Events/10 GeV

600

500

400

300

200

100

Inclusive Cross Section (ee/eµ/µµ)

fb⁻¹

2.4

Selection

- 2 isolated opposite sign leptons - \geq 2 jets (\geq 1 identified b jet)

- ee/ $\mu\mu$: E_{τ} > 40 GeV, veto m₂-region

Cross Section

- cut and count approach
- data driven background estimation:
 - Z+jets from m(II) in m_z window
 - W+jets&QCD from same sign lepton events
- combination of channels: BLUE

Main Systematic Uncertainties

 jet energy scale & resolution, pileup, lepton efficiencies, branching ratio

 $\sigma_{t\bar{t}}$ (combined) = 227 ± 3 (stat.) ± 11 (syst.) ± 10 (lumi) pb

LHCP 2013 Barcelona, 15.05.2013

Summary: $\sigma(t\bar{t})$ at $\sqrt{s}=8$ TeV

LHCP 2013 Barcelona, 15.05.2013

- Martin Görner, University of Hamburg -

α_{s} (M_z) from $\sigma(t\bar{t})$

 $-\sigma(t\bar{t}) = \sigma(m_t, \alpha_s, PDF)$

CMS-PAS-TOP-12-022 ee/eµ/µµ

fb⁻¹

2.3

7 Te

Idea

- joint \mathcal{L} ikelihood approach (theory \otimes experiment) to determine most probable result

Result

- first α_s from $\sigma(t\bar{t})$ measurement - compatible with PDG value

LHCP 2013 Barcelona, 15.05.2013

results with full NNLO+NNLL in progress

Differential Cross Sections (e/µ+jets)

LHCP 2013 Barcelona, 15.05.2013

CMS-PAS-TOP-12-027

 $e/\mu + jets$

fb⁻¹

2.1

Differential Cross Sections (ee/eµ/µµ)

Results (Dilepton) - consistent with lepton+jets results (similar precision) - good agreement

- same behaviour for $p_{\tau}(top)$ observed - dilepton system quantities
 - \rightarrow models including spin correlations (SC) preferred

(here: MadGraph+Pythia without SC)

LHCP 2013 Barcelona, 15.05.2013

More Results ($\sqrt{s}=7$ TeV)

10/13

LHCP 2013 Barcelona, 15.05.2013

Additional Jet Activity (N_{Jets})

Motivation

CMS-PAS-TOP-12-041

ee/eµ/µµ

19.6 fb⁻¹

8 TeV

- can help to constrain simulation parameters and models

<u>1</u> dσ σ dJets

10

Jet Multiplicity Measurement

 MC@NLO+Herwig underestimates higher jet multiplicities

CMS Preliminary, 19.6 fb¹ at $\sqrt{s} = 8$ TeV

> 30 GeV

Data

4*Q²

 $Q^2/4$

Matching up

Matching down

MadGraph+Pythia

Dilepton Combined

 MadGraph: decreased Q² scale slightly worsens agreement

Main Systematic Uncertainties

- jet energy scale, model (Q² and matching scale, hadronisation)

LHCP 2013 Barcelona, 15.05.2013

Additional Jet Activity (f_{Gap})

Jet Veto Measurement

- probe additional radiation
- Gap fraction $f_{Gap}(x) = \frac{N(not x > threshold)}{N_{total}}$, e.g. $x = p_T(1^{st}, 2^{nd} additional jet)$
- already sensitive to differences between predictions
 - same behaviour of MadGraph+Pythia and Powheg+Pythia

- good description within uncertainties
- too few (soft) radiation by MC@NLO+Herwig

Main Systematic Uncertainties: jet energy scale, background

LHCP 2013 Barcelona, 15.05.2013

CMS-PAS-TOP-12-041

ee/eµ/µµ

fb⁻¹

9

6

8 TeV

- Martin Görner, University of Hamburg -

Conclusion

Many Precise tt Cross Section Results from CMS

- inclusive $\sigma(t\bar{t})$

- 7 TeV: all channels (except ττ), precision comparable to NNLO+NNLL prediction
- 8 TeV: five channels, up to 7% precision from first data
- tt differential cross section measurements
- $t\bar{t}$ +X measurements, where X = (b) jets,...

Good agreement between theory/simulation and data \rightarrow gaining sensitivity to model differences

Entered new era of precision measurements for tt!

LHCP 2013 Barcelona, 15.05.2013

Backup

LHCP 2013 Barcelona, 15.05.2013

LHCP 2013 Barcelona, 15.05.2013 - Martin Görner, University of Hamburg -

Radiative Corrections

Purpose of Q² Scale Variation

- adresses renormalisation and factorisation scale (ME)

- adresses amount of initial and final state radiation (ISR/FSR)

Q² Definition and Variation

 $Q^2 = m_t^2 + \sum p_T^2$ (MadGraph) $Q^2 = m_t^2$ (POWHEG/MC@NLO)

 \rightarrow Q² varied up (down) by a factor 4.0 (0.25)

Parton showering

- p_{T} -ordered evolution scale of ISR/FSR
- shares Q^2 factor α_s scale with ME
- implicitly: starting scale changes with ΔQ^2

MadGraph

- tree-level diagrams for hard radiation and interferences (up to 3 final-state partons for tt)
- parton showering for soft and collinear region (with Pythia 6.42X)
- matching via ktMLM, thresholds varied by factor 0.5 to 2.0 (nominal = 20 GeV)

CMS MC Generator Setups

process	ME	PS	method	PDF	Tune
tī + jets	MadGraph v5.x	Pythia v6.42x	ME+PS	CTEQ6L1	Z2(*)
tī	POWHEG-box 1.0	Pythia v6.42x	NLO	CTEQ6M	Z2(*)
tī	MC@NLO v3.41	Herwig v6.520	NLO	CTEQ6M	

Matrix Element + Parton Shower generators

- Better description of high multiplicities
- ISR/FSR modelling via ME from assumed Q² variation
- Matching procedure to remove double counting between partons produced by ME and PS

Next to Leading Order generators

- More accurate in normalization
- Smaller uncertainty on Q²

CMS Analysis

real + virtual corrections

- MadGraph(+Pythia) is the default for most of the analyses
- Uncertainty on radiation covered by variations of Q² and ME-PS matching

LHCP 2013 Barcelona, 15.05.2013

- Martin Görner, University of Hamburg -

tree level diagrams with up to 3 partons

m(lb) in TOP-12-006

2.8 fb⁻¹

m(lb) template fit

- needs association of lepton and leptonic b-jet
- use simple χ^2 sorting for leading four jets

$$\chi^{2} = \left(\frac{m_{bqq} - m_{top}}{\sigma_{top}}\right)^{2} + \left(\frac{m_{qq} - m_{W}}{\sigma_{W}}\right)^{2}$$

- m_{top} , m_{W} : reconstructed top quark and W-boson mass
- σ_{top} , σ_{w} : widths of reconstructed masses
- permutation with lowest χ^2 is chosen
- b-jet identification is applied to leptonic b jet candidate

Differential Measurements

CMS Integrated Luminosity, pp

LHCP 2013 Barcelona, 15.05.2013

Details TOP-12-027

fb⁻¹

2.1

Selection

- 1 isolated lepton & \geq 4 jets (\geq 2 identified b-jets)
- \rightarrow pure sample of tt events

Event Reconstruction

- Kinematic fit: 5 leading jets, b jet association from b-tag information
- constrains: $2 \times m_w$, $m_t = m_{\bar{t}}$
- \rightarrow choose lowest χ^2 jet permutation

Unfolding

- regularised unfolding method
- continuous regularisarion parameter (minimising global correlation)
- binning optimised to limit migration effects

Cross Section

- differentially in a variety of quantities
 - top quarks, tt system: fully extrapolated phase space
 - lepton, b jet: visible hadron level phase space
- normalised wrt. in situ measured $\sigma(t\bar{t})$

p

ie

q

light

jets

b jet

W

p

Details TOP-12-028

fb⁻¹

2.1

8TeV

Selection

- 2 opposite sign leptons
- ≥ 2 jets (≥ 1 identified b-jet)
- data driven estimation for Z+jets background from m_z window

Event Reconstruction

- similar to I+jets channel but 2 v
- scan m(top) in range [100..300] GeV
- prefer solution wrt. reference E_{T} spectrum
- and with identified b-jets

Unfolding+Cross section

- same method as for lepton+jetsadditional quantities:
 - Il system (MC including spin correlation prefered)
 separate top quarks by p_T
- similar precision as as for lepton+jets channel

100

LHCP 2013 Barcelona, 15.05.2013

Pseudo Top Measurement

EW

pseudo top quark = b jet + lepton + E

miss

Concept

- measurement corrected only for detector effects
- \rightarrow as model independent as possible
- "visible top quark" definition
- \rightarrow top defined by its decay products
- joint effort of CMS, ATLAS & theory

Results

ee/eµ/µµ

fb⁻¹

2.1

- extension of differential cross section analysis (CMS-PAS-TOP-12-028)

LHCP 2013 Barcelona, 15.05.2013

f_{Gap}(x) for different parameters

CMS Preliminary, 19.6 fb⁻¹ at vs=8 TeV

- sensitive to choice of Q² scale

Gap Fraction Results

- Q² down variation performs worst
- less sensitive to choice of ME-PS matching scale

Laction 1 0.95 Dilepton Combined Gap 0.9 Η, 0.85 Data 0.8 Syst+Stat error MadGraph+Pythia 0.75MadGraph 4*Q² 0.7 MadGraph Q²/4 MadGraph matching up 0.65 MadGraph matching down 0.6 [heory/Data 0.95 50 100 150 200 250 300 350 400 H₊ [GeV] CMS Preliminary, 19.6 fb⁻¹ at vs=8 TeV traction 1 0.95 Dilepton Combined Gap 0.9E 0.85 Data Syst+Stat error MadGraph+Pythia 0.1 POWHEG+Pythia 0.65 - MC@NLO+Herwig 0.6 heory/Data 0.95 0.9 50 100 150 200 250 300 350 400 H_T [GeV]

22

LHCP 2013 Barcelona, 15.05.2013

2-041

CMS-PAS-TOP-1

ee/eµ/µµ

fb⁻¹

ဖ

ဂ

8 TeV

N(jets) for different p_{T} values

LHCP 2013 Barcelona, 15.05.2013

CMS-PAS-TOP-12-041

ee/eµ/µµ

19.6 fb⁻¹

8 TeV

Selection Details

TOP-12-006 (inclusive $\sigma(t\bar{t})$ in I+jets)

- lepton + jets trigger; 1 isolated lepton (p_T >26/30 GeV, $|\eta|$ <2.1/2.5 for μ /e)
- \geq 4 jets (p_T>45/45/35/35 GeV, |η|<2.5) b-tag for jet assigned to leptonic top (JPM algorithm)

TOP-12-007 (inclusive $\sigma(t\bar{t})$ in dilepton)

- dilepton lepton trigger; 2 isolated opposite sign leptons (p_{τ} >20 GeV, $|\eta|$ <2.4/2.5 for μ /e)
- \geq 2 jets (p_T>30 GeV, |η|<2.5), \geq 1 identified as b-jet (CSVL), m(II)>20 GeV
- ee/μμ: Ε_τ > 40 GeV, |m(II)-mZ| >15 GeV

TOP-12-027 (differential σ(tt)in I+jets)

- 1 isolated lepton (p_T >30 GeV, $|\eta|$ <2.1); ≥ 4 jets (p_T >20 GeV, $|\eta|$ <2.4); ≥ 2 b-jets (CSVM)

TOP-12-028 (differential $\sigma(t\bar{t})$ in dilepton + pseudo top)

- dilepton lepton trigger; 2 isolated opposite sign leptons (p_T >20 GeV, $|\eta|$ <2.4 for μ/e)
- \geq 2 jets (p_T>30 GeV, |η|<2.4), \geq 1 identified as b-jet (CSVL), m(II)>20 GeV
- ee/μμ: Ε_T > 40 GeV, |m(II)-m_z| >15 GeV

TOP-12-041 (addional jet activity in dilepton)

- same as TOP-12-028

LHCP 2013 Barcelona, 15.05.2013 - Martin Görner, University of Hamburg -