

# Charm physics

Jeroen van Tilburg (Physikalisches Institut Heidelberg)

On behalf of the LHCb collaboration Including recent results from LHC and Tevatron

# LHCP 2013

Barcelona, Spain, May 13-18th, 2013



# Charm physics

### Why heavy flavour?

- Search for effects from new, heavy particles in loop diagrams.
  - CP violation and rare decays allow to make precision tests.
- Complementary to direct searches at GPD's.

### Why charm physics?

- Huge amounts of charm decays available at hadron colliders.
- Ultra-high precision tests possible.
- Sensitive to other flavour couplings compared to B decays.

### Status of charm physics

- Broad field, dominated for long time by electron collider experiments
  - Hadron collider experiments come more into play.
- Many on-going activities. This talk focuses on:
  - Open charm production and production asymmetries
  - D mass measurements
  - D<sup>0</sup> mixing
  - CP violation in the charm system •
  - Rare charm decays (including new result)



1.27 GeV/c<sup>2</sup>

charm

<sup>2/3</sup> **C** 

1/2

## Open charm cross section

# **Open charm cross section**

### Motivation

- Understanding of QCD in hadronic collisions at new energy scale.
- Background estimate for SM processes, such as Higgs production.
- Powerful test of QCD@NLO calculations.
  - FONLL: Fixed-Order Next-to-Leading Logarithm JHEP 1210 (2012) 137 (M. Cacciari et al.)
  - GM-VFNS: Generalized Mass Variable Flavour Number Scheme EPJ C72 (2012) 2082 (B. Kniehl et al.)

### Measurements at LHC

- LHCb:
  - Exclusive final states at 7 TeV <u>Nucl.Phys.B871 (2013) 1-20</u> and <u>LHCb-CONF-2010-013</u>.
  - Inclusive final states in high- $p_T$  region <u>LHCb-CONF-2013-002</u>.
- ALICE:
  - Exclusive final states at 2.76 and 7 TeV JHEP 07 (2012) 191.
  - Inclusive (electron) states at 7 TeV PLB 721(2013)13.
- ATLAS:
  - Exclusive final states at 7 TeV <u>ATLAS-CONF-2011-017</u>.
  - D\* production in jets at 7 TeV PRD85 (2012) 052005.

Measured cross sections above FONLL and below GM-VFNS prediction, but in general in good agreement.

# Charm production versus energy

### Comparison plot from ALICE paper

JHEP 07 (2012) 191



- pA and dA collisions scaled down to # binary collisions from Glauber model.
- Compared to NLO (MNR) calculations. Nucl. Phys. B 373 295 (1992).

### Large charm cross section

Factor 20 more than beauty cross section.

More details in QCD2 session.

# Charm production asymmetry

# $D_{d,s}$ production asymmetry

### Motivation

- Need good understanding of production asymmetry for precise measurements of CP violation.
  - Subtract from observed charge asymmetry.
- More relevant at pp collider compared to  $p\overline{p}$  collider.

### Mechanism

• Production mechanism is charge symmetric:



Define:  $A_{p} = \frac{\sigma(D_{d,s}^{+}) - \sigma(D_{d,s}^{-})}{\sigma(D_{d,s}^{+}) + \sigma(D_{d,s}^{-})}$ 

- But, hadronisation can cause asymmetry:
  - Beam drag (colour connection between the *c* and the beam remnants)
    - $\overline{c}$  prefers to form a meson, c a baryon  $\Rightarrow \sigma(D^-) > \sigma(D^+) \Rightarrow A_P < 0$ .
  - Other hadronisation effects (which could depend on  $p_{T}$  or rapidity)

# D<sup>±</sup> production asymmetry

### LHCb (1.0 fb<sup>-1</sup>), PLB 718 (2013) 902

### Method

- $D^+$  reconstructed as  $D^+ \rightarrow K_S^0(\pi^+\pi^-)\pi^+$
- Cabibbo favoured mode: expect negligible CP violation.
  - Correct for small effect from neutral kaon asymmetry (0.03%).
- Correct for pion detection asymmetry.
  - Use D<sub>s</sub><sup>+</sup> production asymmetry measurement: <u>PLB 713 (2012) 186</u>
- Measurement:  $A_P = (-0.96 \pm 0.26 \pm 0.18)\%$ 
  - For 2 < y < 4.75 and  $2 < p_T < 18$  GeV.
  - Sub-percent precision.
  - Systematics (PID,  $\pi^{\pm}$  asymmetry) can be reduced with more data.



## D mass measurements

## D mass measurements

### Motivation

- In contrast to *B* mesons, relatively few precision measurement exist.
- Knowledge on  $D^+$  and  $D_s^+$  mass relatively limited.
- Limits precision on  $B_c$  mass in  $B_c^+ \rightarrow J/\psi D_s^+$  channel
- $D^0$  mass also needed for understanding nature of X(3872)
  - X(3872) could be a  $D^0D^{*0}$  molecule

### New measurement (LHCb)

- Use low Q-value modes:  $D^0 \rightarrow K^- K^+ K^- \pi^+$ ,  $D^0 \rightarrow K^- K^+ \pi^- \pi^+$  and  $D_{(s)} \rightarrow K^+ K^- \pi^+$
- Main systematics from momentum scale and energy loss correction
  - Calibrate momentum scale using  $B^+ \rightarrow J/\psi K^+$  and  $B^+ \rightarrow J/\psi K^+ \pi^- \pi^+$

### LHCb 1.0 fb<sup>-1</sup>, arXiv:1304.6865

| Quantity            | LHCb               | Best previous          | PDG fit            |
|---------------------|--------------------|------------------------|--------------------|
|                     | measurement        | measurement            |                    |
| $M(D^0)$            | $1864.75 \pm 0.19$ | $1864.85 \pm 0.18$ [5] | $1864.86 \pm 0.13$ |
| $M(D^+) - M(D^0)$   | $4.76\pm0.14$      | $4.7 \pm 0.3$ [7]      | $4.76 \pm 0.10$    |
| $M(D_s^+) - M(D^+)$ | $98.68 \pm 0.05$   | 98.4 $\pm 0.3$ [10]    | $98.88 \pm 0.25$   |
|                     | ·                  |                        |                    |

[5] CLEO, PRL 98:092002 (2007)

[7] Mark II, PRD 24, 78–97 (1981)

[10] BaBar, PRD 65:091104 (2002)

# D<sup>0</sup> mass measurement

### LHCb 1.0 fb<sup>-1</sup>, <u>arXiv:1304.6865</u>



New average formed using PDG prescription

# $\rightarrow$ Same precision as previous best measurement from CLEO (2007).

Also preliminary results available from BaBar and Tomaradze et.al.

# $D^+ - D^0$ mass measurement

### LHCb 1.0 fb<sup>-1</sup>, <u>arXiv:1304.6865</u>



New average formed using PDG prescription

→ First reported result in more than 30 years, factor 3 better than PDG average.

# $D_s^+ - D^0$ mass measurement

### LHCb 1.0 fb<sup>-1</sup>, <u>arXiv:1304.6865</u>



New average formed using PDG prescription

- → Factor 5 improvement on PDG average (midway between BaBar and CDF)
- $\rightarrow$  Will reduce uncertainty on Bc mass.



# D<sup>0</sup> mixing

## Motivation

- Mixing occurs in neutral mesons: K<sup>0</sup>, B<sup>0</sup>, B<sub>s</sub>, D<sup>0</sup>.
- $D^0 \overline{D}{}^0$  mixing expected to be very small.
  - Dominated by long range contributions (y); hard to predict.

### Measurement

• Measure time-dependent ratio of wrong sign to right sign *D*<sup>0</sup> decays



• In the limit of small mixing  $|x|, |y| \ll 1$ , and no CP violation:

$$R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} = R_D + \sqrt{R_D}y't + \frac{x'^2 + y'^2}{4}t^2 \quad \begin{array}{c} x' = x\cos\delta + y\sin\delta\\ y' = y\cos\delta - x\sin\delta\\ \end{array}$$
Ratio of DCS to  
CF decay rates Interference of DCS and mixed decays parameters DCS and CF amplitudes

# D<sup>0</sup> mixing at LHCb



# D<sup>0</sup> mixing at CDF

#### New result, <u>CDF Public Note 10990</u>







More details in HF2 session: P. Maestro

# CP violation in charm

# **CP** violation in charm

### Current status

- CP violation well established in the kaon and B decays
- No CP violation yet observed in charm system

### Why look for CP violation in the charm sector

- Charm system special: FCNC processes with up-type quarks
- Complementary to those with down quarks (*B* or *K* mesons).
- Direct CP violation possible in singly-Cabibbo suppressed decays
  - Interference between tree and penguin. Naïve expectation  $\leq 0.1\%$
- Indirect CP violation prediction much smaller

# Direct CP violation in D<sup>0</sup> decays



All of order 1% or smaller

Analysis strategy

$$\Delta A_{CP} = A_{raw}(K^{-}K^{+}) - A_{raw}(\pi^{-}\pi^{+})$$
$$= A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+})$$

Detection and production asymmetry cancel at first order.

- $\Delta A_{CP}$  mainly measurement of direct CP violation
- In SM, assuming SU(3)<sub>F</sub> symmetry:  $a_{CP}^{dir}(K^-K^+) = -a_{CP}^{dir}(\pi^-\pi^+)$

# The $\Delta A_{CP}$ surprise



LHCP2013, Barcelona, 13-18 May 2013

# Recent update of ΔA<sub>CP</sub>

- LHCb performed two independent analyses on full 2011 data set
- Preliminary update of pion-tagged analysis

LHCb-CONF-2013-003

- $\Delta A_{CP} = (-0.34 \pm 0.15 \pm 0.10)\%$
- New measurement of muon-tagged analysis <u>arXiv:1303.2614</u>
  - $\Delta A_{CP} = (+0.49 \pm 0.30 \pm 0.14)\%$



# Direct CP violation in $D_{(s)}^{+}$

LHCb, 1.0 fb<sup>-1</sup>, arXiv:1303.4906

### CP violation in $D^+ \rightarrow \phi \pi^+$ and $D_s^+ \rightarrow K_s^0 \pi^+$ decays

- Use Cabibbo favoured modes to subtract production and detection asymmetry Control channels  $D^+ \rightarrow K_S^0 \pi^+$  and  $D_S^+ \rightarrow \phi \pi^+$  decays
- Also CP violation across  $\phi$  mass in  $D^+ \rightarrow K^+ K^- \pi^+$  Dalitz plane is measured:  $A_{CP|S}$

 $A_{CP}(D^+ \to \phi \pi^+) = (-0.04 \pm 0.14 \pm 0.13)\%$  $A_{CP}|_{S}(D^{+} \to \phi \pi^{+}) = (-0.18 \pm 0.17 \pm 0.18)\%$  $A_{CP}(D_s^+ \to K_s^0 \pi^+) = (+0.61 \pm 0.83 \pm 0.13)\%$ 

 $\rightarrow$  No evidence for CP violation observed



# Rare charm decays

# Rare charm decays

LHCb 0.9 fb<sup>-1</sup>, LHCb-PAPER-2013-013 Final result shown in public for 1<sup>st</sup> time

### Search for $D^0 \rightarrow \mu^+ \mu^-$

- Similar analysis as  $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$  in previous talk .
- Current limits:  $\mathcal{B}(D^0 \rightarrow \mu^+ \mu^-) < 1.4 \times 10^{-7}$  (90% CL). Belle <u>PRD 81 (2010) 091102</u>.
  - Preliminary LHCb result was best previous limit.
- SM prediction:  $\mathcal{B}(D^0 \rightarrow \mu^+ \mu^-) < 6 \times 10^{-11}$ 
  - Dominated by long distance contributions (2γ intermediate state).

### Method

- Search for  $D^*$ -tagged  $D^0 \rightarrow \mu^+\mu^-$  decays.
- Use  $J/\psi \rightarrow \mu^+\mu^-$ ,  $D^0 \rightarrow \pi^+\pi^-$  and  $D^0 \rightarrow K^-\pi^+$  as normalization channels.

### Result

- $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 7.6 \times 10^{-9}$  (95% CL)
- More than factor 20 improvement with respect to previous best measurement.





# Rare charm decays

### Search for $D_{(s)}^+ \rightarrow \pi \mu \mu$

• Three decays with similar topologies. Previous best limits at 10<sup>-5</sup>–10<sup>-6</sup> levels.









### More details in HF2 session: H. Cliff

# Summary

- Many more interesting results (soon) available:
  - Charmonium and double charm production
  - Recent results in  $D_{(s)J}$  spectroscopy.
  - More CP violation analyses ongoing
    - $A_{\Gamma}$ ,  $y_{CP}$  WS mixing asymmetry,  $D^0 \rightarrow K_S^0 h^+ h^-$
- Large statistics is the strength at hadron colliders
  - High sensitivity to small CP violation effects
  - Access to very rare decays
  - Systematics is challenging
- Charm physics at hadron colliders is delivering many results
  - Shown LHCb results are on 2011 data only → 3 x more data on tape
- Interesting times ahead of us!

# **Backup slides**

# Charm production measurements

## LHCb

Exclusive final states at 7 TeV:

 $\sigma_{c\bar{c}}(p_{\rm T} < 8 {\rm GeV \& 2.0 < y < 4.5}) = (1419 \pm 12_{\rm stat} \pm 116_{\rm syst} \pm 65_{\rm frag}) \ \mu b \quad \text{Nucl.Phys.B871 (2013) 1-20}$ 

 $\sigma_{c\bar{c}}^{\text{tot}} = (6.1 \pm 0.9) \text{ mb}$  Preliminary, extrapolated using tuned-Pythia,

• Inclusive final states in high- $p_{T}$  region:

 $\sigma_{c\bar{c}}(p_{\rm T} > 5 \text{GeV \& } 2.5 < y < 4.0) = (104.6 \pm 2.7_{\rm stat} \pm 11.4_{\rm syst}) \ \mu \text{b} \qquad \text{LHCb-CONF-2013-002}$ 

## ALICE

• Exclusive final states at 2.76 and 7 TeV: (extrapolated using FONLL) <u>JHEP 07 (2012) 191</u>  $\sigma_{c\bar{c}}^{tot}(2.76 \text{ TeV}) = (4.8 \pm 0.8(\text{stat})_{-1.3}^{+1.0}(\text{syst}) \pm 0.06(\text{BR}) \pm 0.1(\text{frag}) \pm 0.1(\text{lum})_{-0.4}^{+2.6}(\text{extr})) \text{ mb}$ 

 $\sigma_{c\bar{c}}^{\text{tot}}(7 \text{ TeV}) = (8.5 \pm 0.5(\text{stat})_{-2.4}^{+1.0}(\text{syst}) \pm 0.1(\text{BR}) \pm 0.2(\text{frag}) \pm 0.3(\text{lum})_{-0.4}^{+5.0}(\text{extr})) \text{ mb}$ 

• Inclusive (electrons) at 7 TeV:  $\sigma_{c\bar{c}}^{tot}(7 \text{ TeV}) = (10.0 \pm 1.7(\text{stat})_{-5.5}^{+5.4}(\text{syst}) \pm 0.4(\text{BR})_{-0.5}^{+3.5}(\text{extr})) \text{ mb}$ PLB 721(2013)13

## ATLAS

• Exclusive final states at 7 TeV: (extrapolated using Powheg-Pythia)  $\sigma_{c\bar{c}}^{\text{tot}} = (7.13 \pm 0.28(\text{stat})_{-0.66}^{+0.90}(\text{syst}) \pm 0.78(\text{lum})_{-1.90}^{+3.82}(\text{extr})) \text{ mb}$ ATLAS-CONF-2011-017

LHCb-CONF-2010-013

# $D_s^{\pm}$ production asymmetry

### LHCb (1.0 fb<sup>-1</sup>), PLB 713 (2012) 186

### Method

- $D_s^+$  reconstructed as  $D_s^+ \rightarrow \phi(K^+K^-)\pi^+$
- Cabibbo favoured mode: expect negligible CP violation.
- Need to measure detection and reconstruction asymmetry from pion:
  - Use reconstructed  $D^*$ -tagged  $D^0 \rightarrow K^- \pi^+ \pi^- \pi^-$  where one pion is missing.
  - Measure efficiency ratio for  $\pi^+$  and  $\pi^-$
  - No large asymmetry measured; ratio compatible with 1.
- Measurement:  $A_P = (-0.33 \pm 0.22 \pm 0.10)\%$ 
  - For 2 < y < 4.5 and  $p_{T} > 2$  GeV.
  - Sub-percent precision.



# HFAG average of D<sup>0</sup> mixing

