Elastic and Inelastic Diffraction at the LHC

Risto Orava

LHCp 2013 13 – 18 May 2013 Barcelona LHCP Barcelona

WHY DIFFRACTION?

- SPACE-TIME EVOLUTION OF HADRON-HADRON SCATTERING
- PARTON CONFIGURATIONS WITHIN HADRONS
- ASYMPTOPIA QUARK-GLUON CONFINEMENT

TOTEM \otimes **CMS** running scenarios

5/15/2013

S. Giani

T1, T2 SPECTROMETERS, CASTOR

T1, T2 and CASTOR help in rejecting the backgrounds from SD and ND events. Have good acceptance in p_T: T2 > 40MeV, T1 >100MeV

ATLAS ALFA – Roman Pot stations

3-7.6.2011low x, Santiago de Compostela: Physics program of ALFA and precision luminosity measurement in ATLAS115/15/2013Risto Orava - LHCP Barcelona - 15.5.2013

TOTEM DETECTORS

Horizontal Pot

Vertical Pot BPM

Leading forward protons at ±220 meters: Low & High β^* ($\beta^* \approx 0.55$ m, 90m)

 10^{3} TOP 20 10 10² HORIZ -10 10 BOTTOM -20 -30 30 -20 -10 0 10 20 x [mm]

At low β^* (nominal LHC beam optics) the protons are measured through their **horizontal** deviation from the beam axis.

The proton fractional longitudinal momentum loss, ξ , is proportional to the (horizontal) distance fom the beam axis:

 $\xi = \Delta p / p \propto x$

- measurement sensitive to the transverse (x*,y*) position of the interaction vertex

At high β^* ($\beta^* \approx 90$ m custom optics) the protons are measured through their scattering angle in **vertical** direction.

$$\Theta_{\rm y} \propto p_{\rm T} \approx \sqrt{\left| {\, t_{\rm y}} \right|}$$

measurement sensitive to the horizontal x* position of the interaction vertex in diffractive events
horizontal vertex position obtained by measuring elastic events (if beams assumed to be symmetric in the transverse plane)

ELASTIC CROSS SECTION

$d\sigma_{el}/dt$ yields:

- pp interaction radius (slope of the $d\sigma_{el}/dt$ distribution)
- with the measurement of the total inelastic rate the *total pp cross section*,

A test of the *Coulomb-nuclear Interference* (expected to have an effect over *large* interval in -t).

- A measurement of the ratio of the real and imaginary parts of the forward pp scattering amplitude, $\rho = ReA(s,t)/ImA(s,t)$
- $\Rightarrow \quad \mbox{Through dispersion relations, a precise} \\ measurement of ρ will constrain σ_{tot} at} \\ substantially higher energies \\ \end{tabular}$
- Shadow scattering"

ELASTIC CROSS SECTION - TOTEM

CROSS SECTION MEASUREMENTS - TOTEM

- Dedicated fill with $t_{min} = 0.01 \text{ GeV}^2$, 90% of the nuclear elastic scattering events detected
- With the same analysis performed at 7 TeV, the luminosity independent cross sections are found:

EFFICIENCY OF DETECTING SD EVENTS

WITH FSC, DETECT **SD EVENTS DOWN TO** $M_{diff} \ge 1.1 \text{ GeV}$

THE FWD DETECTORS **AS DIFFRACTIVE MASS SELECTORS** – **CLASSIFICATION**

J.W.Lämsä & RO

$dN_{ch}/d\eta$ measured in T2, sqrt s = 7 TeV

COMBINED CMS-TOTEM CHARGED PARTICLE DENSITIES

Inelastic Diffraction

Probability of finding a rap gap (in inclusive QCD events) depends on the p_T cut-off

Fig. 4. Probability for finding a rapidity gap (definition 'all') larger than $\Delta \eta$ in an inclusive QCD event for different threshold p_{\perp} . From top to bottom the thresholds are $p_{\perp,cut} = 1.0$, 0.5, 0.1 GeV. Note that the lines for cluster and string hadronisation lie on top of each other for $p_{\perp,cut} = 1.0$ GeV. No trigger condition was required, $\sqrt{s} = 7$ TeV.

KKMRZ:

V.A. Khoze, (Durham U., IPPP & St. Petersburg, INP), F. Krauss, A.D. Martin, (Durham U., IPPP), M.G. Ryskin, (Durham U., IPPP & St. Petersburg, INP), K.C. Zapp, (Durham 5/2/1992). IPPP-10-38, DCPT-10-76, MCNET-10-19, 2010 1999. LHCP Barcelona - 15.5.2013

Single diffraction low x

Correlation between leading proton and forward detector T2

run: 37280003, event: 3000

Risto Orava - LHCP Barcelona - 15.5.2013

Single diffraction large x

correlation between leading proton and forward detector T2

run: 37280006, event: 9522

Risto Orava - LHCP Barcelona - 15.5.2013

Single diffraction: $d\sigma/dt$ vs. ξ

t-distributions still to be corrected for beam divergence & effect of ξ on proton φ-acceptance correction

$$\frac{d\sigma_{SD}^{class \ i}}{dt} = e^{-B_{i}t} - \text{backgr.}$$
$$\sigma_{SD} \left(\xi > 2 \times 10^{-7}\right) = \sum_{i} \int_{0}^{\infty} dt \, \frac{d\sigma_{SD}^{class \ i}}{dt}$$

Diffractive cross section at the ISR (0.95 < x_F < 1.0)

Diffraction due to peripheral interactions; fluctuations in :

- impact parameternumber of45%
- rapidities 10%

of the wee partons.

Miettinen & Pumplin, PRD 1978

Diffractive cross section at the ISR (0.95 < x_F < 1.0)

Diffractive cross section at the LHC - speculation

At small diffractive masses (small ξ values), fluctuations in number of wee states grows in relative importance vs. b- or y- fluctuations?

Central diffraction

(1) $\beta^* = 2m, 6m, 18m??$ $d\sigma^{CD}/dM_X dt \text{ (hard CD?)}$

(2) $\beta^* = 90m$ $d\sigma^{CD}/dM_X dt$ (soft & semihard CD)

(3) $\beta^* = 0.55m$ $d\sigma^{CD}/dM_X dt$ (hard CD, discoveries)

(4) $\beta^* = 1540m$ $d\sigma^{CD}/dt$ (soft CD, ξ -t coverage!)

TIME?

Central Exclusive Diffraction (CED)

correlation between leading protons and forward detector T2

run: 37220007, event: 9904

5/15/2013

Risto Orava - LHCP Barcelona - 15.5.2013

DI-JET CANDIDATE EVENT

- E_T of 3
 GeV, 27 GeV
- M(pp, TOTEM) = 244 GeV
- M(CMS) = 219 GeV
- Proton ∆p/p = 0.01 (+z)
- Proton $\Delta p/p = 0.1$ (-z)
- Σ(pT, CMS) = 3.4 GeV

- CMS thresholds for event display
 - ECAL and HCAL $E_T > 200 \text{ MeV}$
 - Track p_T > 1 GeV

Soft Central Diffraction Exchange

TOTEM alone, 20.10.2011 data

β^{*} = 90m optics runs, sqrt s = 7 TeV:

- y < 11σ removed : protection against pile-up beam halo × beam halo beam halo × elastic proton
- DPE protons of -t > 0.02GeV² detected by RP
- nearly complete ξ-acceptance

Single arm DPE event rate in RP

σ_{DPE} estimation:

$$\frac{d^2 \sigma_{DPE}}{dt_1 dt_2} = C(\Delta \phi_{1,2}) e^{-Bt_1} e^{-Bt_2} - \text{backgr.}$$

$$\sigma_{DPE} = \int_{0}^{\infty} dt_{1} \int_{0}^{\infty} dt_{2} \frac{d^{2} \sigma_{DPE}}{dt_{1} dt_{2}} \approx 1 \text{mb}$$

Soft Central Diffraction – dN/dM TOTEM alone, 20.10.2011 data

Event Classification by the T2s

Tracks in both T2s: dd & nd

Tracks in ±T2: mostly sd (M* > 3.5 GeV)

Event Classification by the T1s&T2s

Tracks in both ±T2s No Tracks in ±T1s : Clean dd! - A study being completed

Tracks in either +T2 or -T2 No Tracks in T1s: Mostly sd (M* > 3.5 GeV), - But not so clean

Small Mass Diffractive States

SMALL MASS REGION DOMINATED BY N* RESONANCES

N*(1680MeV)

Fig. 1 Compilation of low-mass SD data form Fermilab experiments $p + d \rightarrow X + d$, $P_{lab} = 275 \text{ GeV/c}$, see [2]. The first peak has the mean value of $M_{X,1} = 1400 \text{ MeV}$ and the second bump has $M_{X,1} = 1688 \text{ MeV}$, wich correspond to the masses of N^* resonances, see Sec. 4.2

Single Diffraction at $M_{\chi} < 10 \text{ GeV}$

For σ_{tot}^{pp} via Optical Theorem need to measure the inelastic rate.

 $\sigma_{SD}(M_X < 3 \text{ GeV}) = ?$

FSCs will solve the problem.

L.Jenkovzsky, O. Kuprash, J.W. Lämsä, V.Magas, RO 5/15/2013 Risto Orava - LHCP Barcelona - 15.5.2013

WHAT NEXT...

- Analysis of Castor and ZDC data: N*, neutral leading states
- Soft SD, CDE, Double Diffraction, (Soft) Evt Classification
- CMS + TOTEM data :
 - Homework: beam halo pile-up, optics, resolutions, acceptance, reconstruction ...
 - Soft and Hard CDE (differential) cross-sections
 - Further studies of particular events (common visualisation soon)
- Upgrade of TOTEM Roman Pot detectors to profit from low- β^{\ast} optics after LHC shut-down
- More data welcome:
 - Data taking : 1000 bunches + x-angles @ β^* =90m

Roman Pot detector system

study of combination: Si strip- Si pixel- timing (schematic)

RP - 200m

RP + 200m

