Production of multiple electroweak bosons at CMS

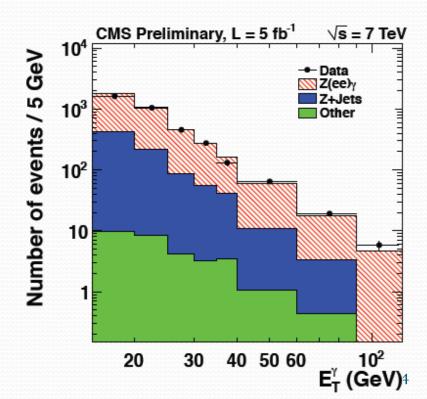
Lara Lloret Iglesias (Universidad de Oviedo)

Overview

- Standard Model diboson measurements are crucial to check the gauge structure of the standard model
 - Irreducible background to new physics searches and Higgs boson analyses
 - → Cross Section results
 - Wγ/Zγ Production
 - WW/WZ Production
 - ZZ production
 - → aTGC results

Main diboson production mechanism

Wy/Zy production cross section


$W_{\gamma} \rightarrow I_{V\gamma}/Z_{\gamma} \rightarrow II_{\gamma}$

Main selection cuts:

- \triangleright lepton p_T > 20 GeV for Z and 35 GeV for W→lv | γ p_T > 15 GeV
- $ightharpoonspace > m_T^W > 70$ GeV to remove background without true MET and surpass electron trigger turn-on.

Background due to mis-identified photons from a template fit to a shower shape

$W\gamma \rightarrow V\gamma/Z\gamma \rightarrow II\gamma$

→ Fair agreement with expectations (at one sigma level)

→ Good agreement with the standard model

Zy -> vvy

- > First measurement of $Z\gamma \rightarrow vv\gamma$ at $\sqrt{s} = 7 \text{ TeV}$
- Experimentally challenging final state due to large instrumental and non-collision backgrounds.
- Most backgrounds and efficiencies are estimated with data-driven methods

Experimental cross section:

$$21.3 \pm 4.2$$
 (stat.) ± 4.3 (syst.) ± 0.5 (lumi) fb

Theoretical prediction:

WW/WZ production cross section

WW production xs

(Physics Letters B. Volume 721, Issues 4-5, 25 April 2013, Pages 190-211)

- 2 high p_T leptons (> 20 GeV)
- $m_{II} > 20 \text{ GeV} \rightarrow \text{remove low mass resonances}$
- Z_{veto} → reduce the DY and WZ background
- No high p_T jet in the event
- b quark veto (only for low pT jets) → top background
- Tight MET cut → DY background
- No third lepton → WZ/ZZ background

→ Main backgrounds estimated from data-driven methods

7 TeV

WW production xs

sample

 $t\bar{t}+tW$

W+jets

WZ+ZZ

 $W_{\gamma} + W_{\gamma}^*$

 Z/γ^*

 $gg \rightarrow WW$

 $qq \rightarrow WW$

8 TeV

yield \pm stat. \pm syst. $43.3 \pm 1.0 \pm 13.4$

 $640.3 \pm 4.9 \pm 47.4$

 $131.6 \pm 12.7 \pm 19.5$

 $60.0 \pm 4.3 \pm 21.6$

 $27.4 \pm 0.5 \pm 2.9$

 $42.5 \pm 6.0 \pm 9.9$

13.6 + 2.4 + 4.3

Yield \pm stat. \pm syst.
$46.03 \pm 0.60 \pm 14.16$
$750.86 \pm 4.11 \pm 53.13$
$128.46 \pm 12.79 \pm 19.55$
$59.45 \pm 3.93 \pm 21.40$
$29.40 \pm 0.43 \pm 2.03$
$10.98 \pm 5.05 \pm 2.59$
$18.84 \pm 2.84 \pm 4.68$
$0.0 \pm 1.0 \pm 0.1$
$247.13 \pm 14.62 \pm 29.54$
$1044.02 \pm 15.20 \pm 62.41$
1134

total background	$275.2 \pm 14.9 \pm 31.2$
signal + background	
data	1111

 $\sigma_{\rm WW} = 52.4 \pm 2.0 \; ({\rm stats.}) \, \pm 1.2 \; ({\rm lumi.}) \, \pm 4.5 \; ({\rm syst.}) \; {\rm pb}$ $\sigma_{\rm WW} = 69.86 \pm 2.79 \; ({\rm stat.}) \pm 5.58 \; ({\rm syst.}) \pm 3.07 \; ({\rm lumi.}) \; {\rm pb}$

To be compared with:

 $\sigma(gg \rightarrow WW + q\bar{q} \rightarrow WW) = 47.04 \text{ pb } \binom{+4.3\%}{-3.2\%}$

To be compared with:

 $\sigma(gg \to WW + qq \to WW) = 57.25 \text{ pb } \binom{+4.1\%}{-2.8\%}$

WW+WZ production xs

Measurement of WW+WZ diboson production in pp collisions in the semileptonic final state:

Eur.Phys.J. C73 (2013) 2283

- One W boson decays leptonically ($l \nu$ with $l = e, \mu$)
- The other boson (W or Z) decays hadronically (jj)
 - > Two energetic jets in the final state.

$$\sigma(pp \rightarrow WW + WZ) = 68.9 \pm 8.7 \text{ (stat.)} \pm 9.7 \text{ (syst.)} \pm 1.5 \text{ (lum.)} \text{ pb}$$

To be compared with:

$$\sigma(pp \rightarrow WW + WZ) = 65.6 \pm 2.2 \text{ pb}$$

ZZ production cross section

ZZ production cross section (Physics Letters B. Volume 721, Issues 4–5, 25 April 2013, Pages 190–211)

- ZZ cross section is measured in the ZZ \rightarrow 2l2l' channel, where l=e/ μ and l'=e/ μ / τ
- $60 < m_{\parallel} < 120$ GeV/c² for the two Z bosons
 - \rightarrow Lepton pair closest to m₇ considered as Z₁.
- Leptons coming from Z_1 : $p_T > 10/20$
- For the Z_2 , taus are also considered: $30 < m_{\tau\tau} < 90 \text{ GeV/c}^2$
- Very little background (even for ZZ \rightarrow 2l2 τ the S/B \geq 1)
- Main background: QCD W/Z+jets and WZ+jets
- Estimated from data: define control samples where one or two leptons fail the isolation/identification criteria.

ZZ production cross section

7 TeV

<u>JHEP 1301 063 (2013)</u>

4*l* Total: 54 observed, 54.6 expected (53.2+1.4)

2ℓ2τ Total: 11 observed, 11.5 expected (7.1+4.4) $\sigma(pp \to ZZ) = 6.24 \pm 0.86 \text{ (stat.)} \pm 0.41 \text{ (syst.)} \pm 0.14 \text{ (lum.) pb}$

Consistent with the SM prediction at 7 TeV:

$$\sigma(pp \rightarrow ZZ) = 6.3 \pm 0.4 \text{ pb}$$

ZZ production cross section

8 TeV

Channel	4e	4μ	2e2 μ	2ℓ2τ
ZZ Background	$11.6 \pm 1.4 \\ 0.4 \pm 0.2$	$\begin{array}{c} 20.3 \pm 2.2 \\ 0.4 \pm 0.3 \end{array}$	$32.4 \pm 3.5 \\ 0.5 \pm 0.4$	6.5 ± 0.8 5.6 ± 1.4
${\bf Signal+background}$	12.0 ± 1.4	20.7 ± 2.2	32.9 ± 3.5	12.1 ± 1.6
Data	14	19	38	13

$$\sigma(pp \rightarrow ZZ) = 8.4 \pm 1.0 \text{ (stat.)} \pm 0.7 \text{(syst.)} \pm 0.4 \text{ (lum.)} \text{ pb}$$

Consistent with the SM prediction at 8 TeV:

$$\sigma(pp \rightarrow ZZ) = 7.7 \pm 0.4 \text{ pb}$$

Triple Gauge Couplings

Coupling	Parameters	Channel
WWγ	$\Delta \kappa_{\gamma}$, λ_{γ}	WW, Wy
WWZ	$\Delta g_1^Z, \Delta \kappa_Z, \lambda_Z$	WW, WZ
ZZγ	h_3^Z , h_4^Z	Ζγ
Ζγγ	h ₃ ^y , h ₄ ^y	Ζγ
ZZZ	f_4^Z , f_5^Z	ZZ
ΖγΖ	f_4^{γ} , f_5^{γ}	ZZ

- Predicted by the Gauge structure of the Standard Model
- Neutral TGC couplings are forbidden at tree level by the SM
- Non-SM values would increase the cross section at high mass,p_T

TGC limits from Zy (Ily)

→ Determined from events with high p_T photon

	h_3^{γ}	h_4^{γ}	h_3^Z	h_4^Z
$Z\gamma \rightarrow ee\gamma$	-0.013, 0.013	-1.1 , 1.1×10^{-4}	-0.011, 0.011	$-9.9, 9.5 \times 10^{-5}$
$Z\gamma \rightarrow \mu\mu\gamma$	-0.013, 0.013	-1.1 , 1.2×10^{-4}	-0.011, 0.011	-1.0, 1.1 ×10 ⁻⁴
$Z\gamma ightarrow \ell\ell\gamma$	-0.010, 0.010	$-8.8, 8.8 \times 10^{-5}$	$-8.6, 8.4 \times 10^{-3}$	$-8.0, 7.9 \times 10^{-5}$

TGC limits from Zy (MET+y)

Most stringent limits on trilinear gauge couplings set to date:

$$\begin{array}{|l|l|}\hline |h_3^\gamma| < 2.9 \times 10^{-3} \\ |h_4^\gamma| < 1.5 \times 10^{-5} \\ \hline |h_4^Z| < 2.7 \times 10^{-3} \\ |h_4^Z| < 1.3 \times 10^{-5} \\ \hline \end{array} \quad \begin{array}{|l|l|l|} Z\gamma\gamma \text{ couplings} \\ ZZ\gamma \text{ couplings} \\ ZZ\gamma \text{ couplings} \\ ZZ\gamma \text{ couplings} \\ \hline \end{array}$$

WWy and WWZ TGC

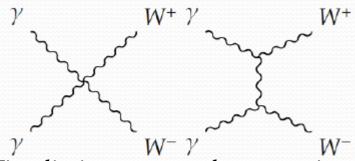
Limits determined from p_T spectrum:

- Photon in Wγ
- Leading lepton in WW → lvlv
- Z boson in WZ → IvII
- Dijet system in WW/WZ → lvjj

TGC limits from ZZ

CMS JHEP 1301 (2013) 063

Determined from the four lepton invariant mass distribution:



$$-0.011 < f_4^{\rm Z} < 0.012, -0.012 < f_5^{\rm Z} < 0.012, -0.013 < f_4^{\gamma} < 0.015, -0.014 < f_5^{\gamma} < 0.014.$$

Anomalous Quartic Couplings

CMS PAS FSQ-12-010

First limits on anomalous quartic couplings at LHC from CMS measurement of exclusive two photon production of WW

 $pp \rightarrow p(*)WWp(*) \rightarrow p(*)\mu ep(*)$

Observed 2 events SM: 2.2 ± 0.5 events Background 0.84 ± 0.13

Cross section:

Measured: 2.1 +3.0 -1.9

 $SM: 3.8 \pm 0.9$

٨	$ a_0^W/\Lambda^2 $ / GeV ⁻²	$ a_C^W/\Lambda^2 $ / GeV ⁻²
500 GeV	< 0.00017	< 0.0006
∞	2.8 x 10 ⁻⁶	1.02 x 10 ⁻²

ightharpoonup Limits set from number of events with $p_T(\mu e) > 100 \text{ GeV}$

Conclusions

- Cross section calculated for the different diboson channel
 - No significant deviation from the SM observed
- Limits set on anomalous gauge boson couplings
 - No evidence is found for physics beyond the SM
- Plans:
 - Update all the analysis with the full luminosity at 8 TeV