Multiple Higgs and gauge boson production beyond the SM

A. Belyaev, A. Oliveira, R.R. and M. Thomas, JHEP 1305 (2013) 005

Rogerio Rosenfeld
Instituto de Física Teórica – UNESP
ICTP – SAIFR

Multiparticle production is the hallmark of strongly coupled models

Take a nonlinear sigma model:

$$\mathcal{L}_{NL\sigma M}=rac{v^2}{4}{
m Tr}\left[\partial_\mu U\partial^\mu U^\dagger
ight]$$

The cross section to produce n relativistic pions is:

$$\sigma(2 \to n) \sim \frac{1}{s} \left(\frac{s}{v^n}\right)^2 s^{n-2}$$

The cross section grows faster with number of pions: violates perturbative unitarity.

In the SM there must be strong cancellations in the scattering amplitudes to avoid unitarity violation:

$$\mathcal{M}(2 \to 2) : s \Longrightarrow \text{const}$$

 $\mathcal{M}(2 \to 4) : s \Longrightarrow 1/s$

In composite Higgs models the unitarization is only partial due to anomalous Higgs couplings.

One can have greater sensitivity to modifications of Higgs couplings in multi-particle production.

Can parametrize anomalous couplings with an effective lagrangian (à la SILH):

$$\mathcal{L}_{\text{eff}} = \frac{v^2}{4} \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + b_3 \frac{h^3}{v^3} + \cdots \right) \text{Tr} \left[\partial_{\mu} U \partial^{\mu} U^{\dagger} \right]$$

$$+ \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 - d_3 \lambda v h^3 - d_4 \frac{\lambda}{4} h^4 + \cdots$$
SM values $a = b = d_3 = d_4 = 1$ and $b_3 = 0$

$$a = \sqrt{1 - \xi}, \ b = (1 - 2\xi) \cdots$$

$$\mathcal{M}_{00;+-} = \frac{s \left[(1 - a^2)s - m_h^2 \right]}{v^2 (s - m_h^2)} \xrightarrow[s \gg m_h^2]{} (1 - a^2) \frac{s}{v^2}$$

Amazing cancellations in the SM

$$\mathcal{M}_{00;00+-} \propto \frac{1}{v^4} \left[72s \left(13a^4 - a^2(7b+5) - 1 \right) + 3m_h^2 \left(1580a^4 - 378a^3d_3 - 3a^2(245b+131) - 74 \right) + \frac{m_h^4}{s} \left(9774a^4 - 3087a^3d_3 - a^2(4494b+1289) + 52 \right) + \cdots \right]$$

$$(14)$$

It grows with s, as expected. However, in the SM $(a = b = d_3 = 1)$ one obtains in the limit $s \gg m_b^2$:

$$\mathcal{M}_{00;00+-} \propto \frac{1}{s} \frac{m_h^4}{v^4}$$
 (15)

Expect a huge enhancement in 2→4 with anomalous couplings! Amplitude goes as s instead of 1/s.

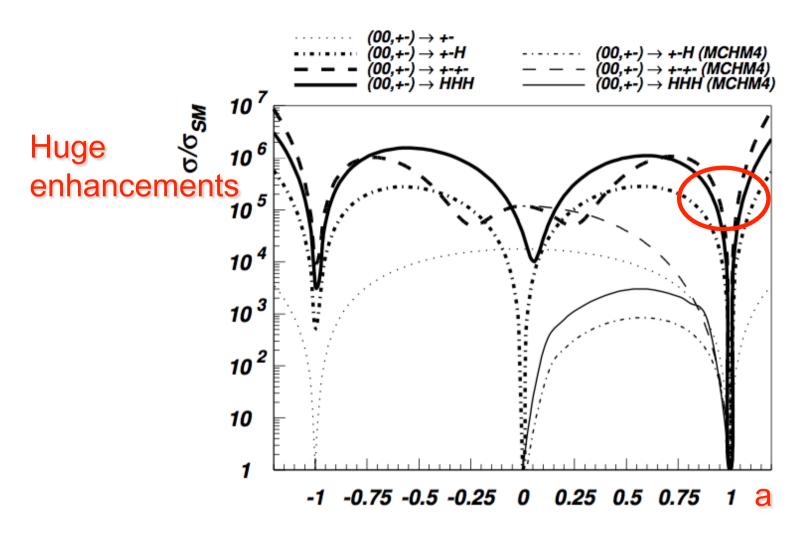
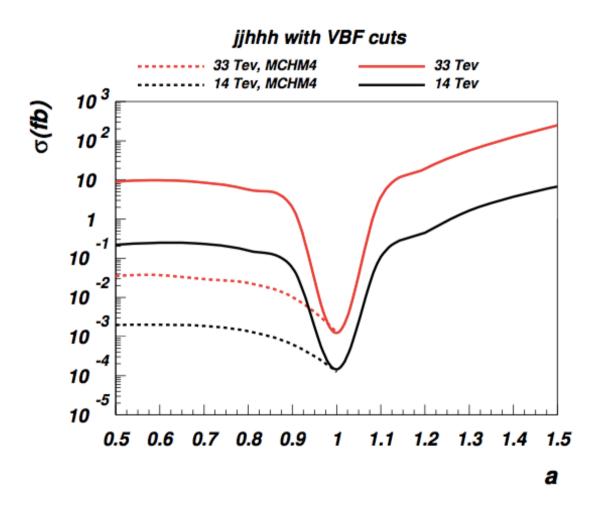


Figure 1: Ratio of the SMEFF (thin lines) and MCHM4 (thick lines) cross sections to the SM one versus a parameter at a fixed energy of $\sqrt{s} = 2$ TeV. The different channels are: $(00, +-) \rightarrow +-+-$ (dashed line), $(00, +-) \rightarrow +--+$ (dot-dashed line), $(00, +-) \rightarrow +--+$ (solid line), and $(00, +-) \rightarrow +--$ (dotted line) for comparison. The notation (00, +-) indicates that both 00 and +- initial states were taken into account.


Do large enhancements persist in full calculation?

Yes, in triple higgs production!

	14 TeV		33 TeV	
Process	with (without) VBF cuts		with (without) VBF cuts	
	a=1.0	a=0.9	a=1.0	a=0.9
	b=1.0	b=1.0	b=1.0	b=1.0
$pp o jjW^+W^-$	95.2 (1820)	99.3 (1700)	512 (5120)	540 (5790)
$pp o jjW^+W^-h$	0.011 (0.206)	0.0088 (0.172)	0.0765 (0.914)	0.0626 (0.758)
pp o jjhhh	1.16×10^{-4} (3.01×10^{-4})	0.0566 (0.0613)	0.00115 (0.00165)	1.85 (1.46)

Table 2: Cross section (in fb) for $pp \to jjW^+W^-$, $pp \to jjW^+W^-h$ and $pp \to jjhhh$ processes evaluated with Madgraph5.

Triple higgs production

Too small to be seen...