

Measurement of the Properties of Electroweak Bosons at D0

W charge asymmetry measurements Z boson P_T (Φ^*) measurements

Hengne Li

University of Virginia On behalf of the DØ Collaboration

Motivation of W/Z properties measurements

LHCP 2013, 17 May 2013

Hengne Li, University of Virginia

Motivation of W/Z propert

0.5

Motivation of W/Z properties measurement

Pull plot of SM global fit

EW precision measurements start to be limited by theoretical uncertainties.

E.g. PDF and boson P_T uncertainties are limiting factors for the W mass measurement.

	CDF 2.2 fb ⁻¹	D0 4.3 fb ⁻¹
Parton distribution functions	10	11
QED radiation	4	7
$p_T(W) $ model	5	2
Production subtotal	12	13
Total systematic uncertainty	15	22
W boson statistics	12	13
Total uncertainty	19	26

Reduce PDF uncertainties:

W charge asymmetry measurements Reduce boson P_T uncertainties:

Z boson P_T (Φ^*) measurements

- W Boson is mostly produced by valence quark pairs at Tevatron
- u(ubar) quark carries more momentum than d(dbar) quark
- Thus:
 - W+ preferentially boosted along proton direction
 - W⁻ preferentially boosted along anti-proton direction

W Charge Asymmetry

d quark in the proton • x1 and x2 are the momentum fractions in the proton and anti-proton \sqrt{S}

Directly constrains PDFs, but the 4-momentum of W is not easy to reconstruct, because the neutrino longitudinal momentum (Pz) is not directly measurable at hadron colliders $\approx \frac{u(x)}{d(x)}$ Alternative observable is the charge daymetry of the lepton from the W decay.

One can of cause try to infer the W longitudinal momentum from the W mass constraint within a two fold ambiguity.

W Charge Asymmetry

Lepton Charge Asymmetry:

$$A(\eta_{\mu}) = \frac{\frac{d\sigma(\mu^{+})}{d\eta_{\mu}} - \frac{d\sigma(\mu^{-})}{d\eta_{\mu}}}{\frac{d\sigma(\mu^{+})}{d\eta_{\mu}} + \frac{d\sigma(\mu^{-})}{d\eta_{\mu}}}$$

Directly observable but counterbalances the W charge asymmetry, due to the V-A asymmetry and angular momentum conservation.

E.g. for W+:

W Charge Asymmetry

- Strong constraint power on PDFs: Much smaller uncertainty from measurement than theoretical (PDF) prediction.
- Some tension at high lepton P_T.

Pink: W->ev, 0.75 fb⁻¹, PRL 101, 211801 (2008)

Black: W->µv, 4.9 fb⁻¹, DØ Note 5976-CONF (2009)

Full data set results are coming.

P_T distribution of Z bosons, Φ^* measurement

Theoretical modeling of P_{T}(Z) requires soft gluon resummation with additional non-perturbative form factors determined by experimental data.

Benefitted by many precision measurements, including the W boson mass.

Ф*

P_T distribution of Z bosons, Φ^* measurement

D0 7.3 fb⁻¹ 455k Z->ee events 511k Z->μμ events The first measurement using this method.

PRL 106, 122001 (2011)

P_T distribution of Z bosons, Φ^* measurement

Full data set (10 fb⁻¹) Z->µµ is now in internal review!

Summary

- The Higgs discovery=> we can precisely examine a completed SM.
- Precision EW measurements start to be theoretically limited.
- W/Z properties measurements:
 - W charge asymmetry:
 - Direct constraint on the valence quark PDFs
 - Z boson $P_T (\Phi^*)$ measurements:
 - Improve modeling of boson P_T
- New results are coming from D0!

Backup slides

The Tevatron

- The Tevatron is a Proton-Antiproton Collider at 1.96 TeV
 - CP symmetric initial states
 - Low pileup ! $N(vertex) \sim 5$.
- W and Z bosons are produced mainly by valence quarks (compared to LHC)
 - Low PDF uncertainties
 - Ideal for asymmetry measurements

The DØ Detector

- Tracking
 - 2 T magnet
 - $\delta P_T / P_T \sim 10\%$ @ 45 GeV
 - $\delta\eta \sim 1.5 \times 10^{-3}$
 - $\delta \phi \sim 4 \times 10^{-4}$
- Calorimeter
 - η coverage up to 4.2
 - $\delta E/E \sim 4\%$ @ 45 GeV
 - Thickness ~ $20 X_0$
 - Granularity $\phi \times \eta \sim 0.1 \times 0.1$
- Muon System
 - η coverage up to 2

Motivation of W/Z properties measurement

Pull plot of SM global fit

W mass uncertainties:

D0 W->ev 4.3 fb⁻¹

Source	Uncertainty (MeV)
Electron energy calibration	16
Electron resolution model	2
Electron shower modeling	4
Electron energy loss model	4
Recoil energy scale and resolution	5
Electron efficiencies	2
Backgrounds	2
Experimental subtotal	18
Parton distribution functions	11
QED radiation	7
$p_T(W)$ model	2
Production subtotal	13
Total systematic uncertainty	22
W boson statistics	13
Total uncertainty	26

CDF W->ev + W->µv 2.2 fb⁻¹

Source	Uncertainty (MeV)
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton removal from recoil	2
Backgrounds	3
Experimental subtotal	10
Parton distribution functions	10
QED radiation	4
$p_T(W)$ model	5
Production subtotal	12
Total systematic uncertainty	15
W boson statistics	12
Total uncertainty	19

Hengne Li, University of Virginia

LHCP 2013, 17 May 2013