A Cocktail Model:From Radiative V Massesto Dark Matter and Back

Jose Miguel No (Sussex U.)

In Collaboration with Michael Gustafsson & Maximiliano Rivera.

November 14th 2012

Neutrino Oscillations -

Direct Experimental Evidence of Massive Neutrinos

 $\Delta m_{21}^2 \equiv m_2^2 - m_1^2 = 7.62^{+0.19}_{-0.19} \times 10^{-5} \text{eV}^2 \qquad \left| \Delta m_{31}^2 \right| \equiv \left| m_3^2 - m_1^2 \right| = 2.53^{+0.08}_{-0.1} \times 10^{-3} \text{eV}^2$

If we add Right-Handed Neutrinos to the SM... \checkmark

Yukawa coupling for Neutrinos

$$\mathcal{L} \supset -\overline{L_L}\phi Y_l l_R - \overline{L_L}\tilde{\phi}Y_\nu\nu_R$$

(Dirac Mass Term)

If we add Right-Handed Neutrinos to the SM ...

Yukawa coupling for Neutrinos

$$\mathcal{L} \supset -\overline{L_L}\phi Y_l l_R - \overline{L_L}\tilde{\phi}Y_\nu\nu_R$$

 \checkmark

(Dirac Mass Term)

However...

Neutrino Oscillation Data +

$$m_{\nu_e} \equiv \sqrt{\sum_i |U_{ei}|^2 m_{\nu_i}^2} < 2 \,\mathrm{eV}$$

$$M_{\nu} < eV$$

Suggests Alternative Mechanism for Neutrino Mass Generation

Tritium β - Decay

$$Y_{\nu} \sim 10^{-11} \ll Y_l$$

Why So Small?

• See-Saw Mechanism:

Majorana Mass Term

Type I See-Saw (Fermion Singlet)

 $\mathcal{L} \supset -\overline{L_L}\phi Y_l l_R - \overline{L_L}\tilde{\phi}Y_\nu\nu_R \left(-\frac{1}{2}\overline{\nu_R^c}M_R\nu_R\right)$

Lepton Number Breaking

Majorana Neutrino Mass Matrix

$$\left(\begin{array}{cc} 0 & Y_{\nu}v \\ Y_{\nu}v & M_R \end{array}\right) \longrightarrow \left(\begin{array}{cc} \frac{(Y_{\nu}v)^2}{M_R} & 0 \\ 0 & M_R \end{array}\right)$$

D=5 Weinberg Operator Generated at Tree Level $M_{\nu} \sim (Y_{\nu}v)^{2}/M_{R}$ V $M_{R} \sim 10^{15} \text{ GeV} \rightarrow Y_{\nu} \sim 1$ $M_{R} \sim \text{TeV} \rightarrow Y_{\nu} \sim 10^{-6}$

See-Saw Mechanism:

Type II See-Saw

(Scalar Triplet)

 $\mathcal{L} \supset -\vec{\Delta}^{\dagger} M_{\Delta}^2 \vec{\Delta} + \overline{\tilde{L}_L} Y_{\Delta} (\vec{\sigma} \cdot \vec{\Delta}) L_L + \mu_{\Delta} \tilde{\phi}^{\dagger} (\vec{\sigma} \cdot \vec{\Delta})^{\dagger} \phi + \text{h.c.}$

Lepton Number Breaking

Typically $M_R / M_A \gg 100 \text{ GeV}$ in See-Saw models

D = 5 Weinberg Operator Generated at Tree Level $\mathsf{M}_{v} \sim \mathrm{Y}_{\Delta} \, \boldsymbol{\mu}_{\Delta} \, (\mathrm{v}/\mathrm{M}_{\Delta})^{2}$

... Type III See-Saw

(Fermion Triplet)

2 Radiative Neutrino Masses:

(Typically Involving Extended Scalar Sectors)

Zee Model

$$-\Delta \mathcal{L}_{\text{Zee}} = \kappa_1 \phi_1^T i \sigma_2 \phi_2 h^- + Y_{ab} \phi_1 \overline{l_{L_a}} l_{R_b} + f_{ab} \overline{l_{L_a}}^T i \sigma_2 l_{L_b} h^+ + \text{h.c.}$$

Lepton Number Breaking

Majorana Mass Matrix for Left-Handed Neutrinos Generated at 1-loop

A. Zee, Phys. Lett. B 93 (1980) 389

2 Radiative Neutrino Masses:

Babu Model

$$-\Delta \mathcal{L}_{\text{Babu}} = \kappa_2 h^- h^- k^{++} + C_{ab} \overline{l_{R_a}^c} l_{R_b} k^{++} + f_{ab} \overline{l_{L_a}^c}^T i \sigma_2 l_{L_b} h^+ + \text{h.c.}$$

Lepton Number Breaking

Majorana Mass Matrix for Left-Handed Neutrinos Generated at 2-loops K. S. Babu, Phys. Lett. B **203** (1988) 132

Both Zee and Babu Models Generate the D = 5 Weinberg Operator at Loop Level

2 Radiative Neutrino Masses:

Other Models ... (inspired by Zee/Babu)

C. S. Chen, C. Q. Geng & J. N. Ng, Phys. Rev. D **75** (2007) 053004 F. del Aguila, A. Aparici, A. Santamaria & J. Wudka, JHEP **1205** (2012) 133 ...

Very Rich Phenomenology:

→ Possible Collider Signatures at LHC & ILC

- → New Charged States
- → Same Sign Di-Leptons
- → LFV Processes

•••

2 Radiative Neutrino Masses:

Other Models... (inspired by Zee/Babu)

C. S. Chen, C. Q. Geng & J. N. Ng, Phys. Rev. D **75** (2007) 053004 F. del Aguila, A. Aparici, A. Santamaria & J. Wudka, JHEP **1205** (2012) 133 ...

Very Rich Phenomenology:

Large Lepton Flavour Violation
 Large Neutrinoless Double β-Decay

LFV and 0νββ <u>Much More Supressed</u> in See-Saw Models (typically)

Radiative Neutrino Mass Generation:

→ Attractive Alternative to See-Saw Mechanism

→ Very Rich (and Testable) Phenomenology

Radiative Neutrino Mass Generation:

→ Attractive Alternative to See-Saw Mechanism

→ Very Rich (and Testable) Phenomenology

→ Possible Connection between Neutrino Masses & Dark Matter

 \mathbf{c}

WIMP Dark Matter from BSM Extended Scalar Sectors

Singlet Higgs-Portal DM

$$-\mathcal{L}_S \supset V(\phi) + \xi |\phi|^2 S^2$$

J. McDonald, Ph C. P. Burgess, M. Pospelov & T. ter Veldhuis, Nucl. Phys. B 619 (2001) 709

Inert Doublet Model

$$-\mathcal{L}_D \supset V(\left|\phi_1\right|^2, \left|\phi_2\right|^2) + \lambda_4 \left|\phi_1^{\dagger}\phi_2\right|^2 + \lambda_5 \left(\phi_1^{\dagger}\phi_2\right)^2 + \text{h.c.}$$

E. Ma, Phys. Rev. D 73 (2006) 077301

R. Barbieri, L. J. Hall and V. S. Rychkov, Phys. Rev. D 74 (2006) 015007

L. Lopez-Honorez, E. Nezri, J. F. Oliver and M. Tytgat, JCAP 1207 (2007) 028

WIMP Dark Matter from BSM Extended Scalar Sectors

Small ν Masses May be Connected to Dark Matter Stability

[.] E. Ma, Phys. Rev. D **73** (2006) 077301

 \mathbf{c}

¢

L. Krauss, S. Nasri and M. Trodden, Phys. Rev. D 67 (2003) 085002

$$-\mathcal{L} \supset V(|\phi_1|^2, |\phi_2|^2) + \lambda_4 \left| \phi_1^{\dagger} \phi_2 \right|^2 + \lambda_5 \left(\phi_1^{\dagger} \phi_2 \right)^2 + \frac{1}{2} \overline{\nu_R^c} M_R \nu_R \\ + \overline{L_L} \phi_1 Y_l l_R + \overline{L_L} \widetilde{\phi_1} Y_\nu \nu_R + \overline{L_L} \widetilde{\phi_2} Y_\nu \nu_R + \text{h.c.}$$

Radiative (1-loop) See-Saw

 $N(v_{R}) \text{ or Neutral component of } \phi_{2}$ Fermionic DM candidate

WIMP Dark Matter from BSM Extended Scalar Sectors

Small V Masses May be Connected to Dark Matter Stability E. Ma, Phys. Rev. D **73** (2006) 077301

L. Krauss, S. Nasri and M. Trodden, Phys. Rev. D 67 (2003) 085002

 $-\mathcal{L} \supset V(|S_1|^2, |S_2|^2) + \lambda_4 |S_1^+ S_2^-|^2 + \lambda_5 (S_1^+ S_2^-)^2 + f_{ab} \overline{l_{L_a}^c}^T i\sigma_2 l_{L_b} S_1^+ + g_a \nu_R S_2^+ l_{R_a} + \frac{1}{2} \overline{\nu_R^c} M_R \nu_R + \text{h.c.}$

¢

3-loop Majorana Mass!

 $N(v_{R})$ is a DM candidate

WIMP Dark Matter from BSM Extended Scalar Sectors

¢

Small V Masses May be Connected to Dark Matter Stability
E. Ma, Phys. Rev. D 73 (2006) 077301
L. Krauss, S. Nasri and M. Trodden, Phys. Rev. D 67 (2003) 085002

 \rightarrow Z₂ Symmetry (DM) Responsible for Small (<u>Loop Suppression</u>)

 \rightarrow In Both Models, <u>D = 5 Weinberg Operator</u> \rightarrow Leading Contribution to M

WIMP Dark Matter from BSM Extended Scalar Sectors

¢

Small V Masses May be Connected to Dark Matter Stability
E. Ma, Phys. Rev. D 73 (2006) 077301
L. Krauss, S. Nasri and M. Trodden, Phys. Rev. D 67 (2003) 085002

 \rightarrow Z₂ Symmetry (DM) Responsible for Small (M) (Loop Suppression)

 \rightarrow In Both Models, <u>D = 5 Weinberg Operator</u> \rightarrow Leading Contribution to M

Naturally Small v Masses from BSM Extended Scalar Sectors
 (inspired by Zee/Babu)
 WIMP Dark Matter

- \rightarrow Z₂ Symmetry (DM) Responsible for Small M_v
- \rightarrow Rich Phenomenology (LFV, $0\nu\beta\beta$, Colliders...)
- \rightarrow Properties of Neutrino Sector Affected in Dramatic Way

Naturally Small v Masses from BSM Extended Scalar Sectors
 (inspired by Zee/Babu)
 WIMP Dark Matter

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{h+iG_0}{\sqrt{2}} \end{pmatrix} + \begin{pmatrix} 0 \\ v \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \Lambda^+ \\ \frac{H_0+iA_0}{\sqrt{2}} \end{pmatrix} \qquad S^+ \qquad \rho^{++}$$

Naturally Small v Masses from BSM Extended Scalar Sectors (inspired by Zee/Babu) WIMP Dark Matter $\Phi_1 = \begin{pmatrix} G^+ \\ \frac{h+iG_0}{\sqrt{2}} \end{pmatrix} + \begin{pmatrix} 0 \\ v \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \Lambda^+ \\ \frac{H_0+iA_0}{\sqrt{2}} \end{pmatrix} \qquad S^+ \qquad \rho^{++}$ Inert Doublet Model

Naturally Small v Masses from BSM Extended Scalar Sectors
 (inspired by Zee/Babu)
 WIMP Dark Matter

$$\Phi_{1} = \begin{pmatrix} G^{+} \\ \frac{h+iG_{0}}{\sqrt{2}} \end{pmatrix} + \begin{pmatrix} 0 \\ v \end{pmatrix} \qquad \Phi_{2} = \begin{pmatrix} \Lambda^{+} \\ \frac{H_{0}+iA_{0}}{\sqrt{2}} \end{pmatrix} \qquad S^{+} \qquad \rho^{++}$$

Naturally Small v Masses from BSM Extended Scalar Sectors (inspired by Zee/Babu) WIMP Dark Matter

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{h+iG_0}{\sqrt{2}} \end{pmatrix} + \begin{pmatrix} 0 \\ v \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \Lambda^+ \\ \frac{H_0+iA_0}{\sqrt{2}} \end{pmatrix} \qquad S^+ \qquad \rho^{++}$$

$$-\Delta \mathcal{L} = C_{ab} \overline{l_{R_a}^c} l_{R_b} \rho^{++} + V(|\Phi_1|^2, |\Phi_2|^2, |S|^2, |\rho|^2) + \lambda_4 \left| \Phi_1^{\dagger} \Phi_2 \right|^2 + \frac{\lambda_5}{2} \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \kappa_1 \Phi_1^T i \sigma_2 \Phi_2 S^- + \lambda_{\rho S} \Phi_1^T i \sigma_2 \Phi_2 S^+ \rho^{--} + \kappa_2 S^- S^- \rho^{++} + \text{h.c.}$$

For $\kappa_1 \neq 0$, S- Λ Mixing

$$\Lambda^+ = c_\theta H_1^+ - s_\theta H_2^+$$
$$S^+ = s_\theta H_1^+ + c_\theta H_2^+$$

Naturally Small v Masses from BSM Extended Scalar Sectors
 (inspired by Zee/Babu)
 WIMP Dark Matter

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{h+iG_0}{\sqrt{2}} \end{pmatrix} + \begin{pmatrix} 0 \\ v \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \Lambda^+ \\ \frac{H_0+iA_0}{\sqrt{2}} \end{pmatrix} \qquad S^+ \qquad \rho^{++}$$

$$-\Delta \mathcal{L} = C_{ab} \overline{l_{R_a}^c} l_{R_b} \rho^{++} + V(|\Phi_1|^2, |\Phi_2|^2, |S|^2, |\rho|^2) + \lambda_4 \left| \Phi_1^{\dagger} \Phi_2 \right|^2 + \frac{\lambda_5}{2} \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \kappa_1 \Phi_1^T i \sigma_2 \Phi_2 S^- + \lambda_{\rho S} \Phi_1^T i \sigma_2 \Phi_2 S^+ \rho^{--} + \kappa_2 S^- S^- \rho^{++} + \text{h.c.}$$

Lepton Number Breaking

Need
$$C_{ab} \neq 0$$
, $\lambda_5 \neq 0$, $(\kappa_1 \neq 0)$
Need $\lambda_{\rho s}$ or $\kappa_2 \neq 0$

Naturally Small v Masses from BSM Extended Scalar Sectors
 (inspired by Zee/Babu)
 WIMP Dark Matter

V Masses generated at 3-Loops via the "Cocktail Diagram"

$$m_{\nu_{ab}} \simeq \frac{\operatorname{Sin}^2(2\,\theta)}{(16\,\pi^2)^3} \, \frac{m_{A_0}^2 - m_{H_0}^2}{m_{A_0}m_{H_0}} \, \left(\frac{m_{H_1}^2 - m_{H_2}^2}{m_{H_1}m_{H_2}}\right)^2 \, \frac{(\kappa_2 + \lambda_{\rho S}v)}{m_{\rho}^2} \, m_{l_a}m_{l_b} \, C_{ab}$$

Naturally Small v Masses from BSM Extended Scalar Sectors (inspired by Zee/Babu) WIMP Dark Matter

 \rightarrow Leading Contribution to M_{1} from <u>D = 9 Operator</u> (D = 5 Operator Sub-Leading)

WEINBERG OPERATOR

Naturally Small v Masses from BSM Extended Scalar Sectors (inspired by Zee/Babu) WIMP Dark Matter

1 Neutrino Masses & Mixings

$$m_{\nu} = U^T \, m_{\nu}^D \, U$$

O Neutrino Masses & Mixings

$$m_{\nu} = U^T \, m_{\nu}^D \, U$$

	(m_1	0	0)
$m_{\nu}^D =$		0	m_2	0
	(0	0	m_3 /

2 Majorana Phases

3 Mixing Angles, 1 CP Phase

$$s_{12} = sin(\theta_{12}), s_{13} = sin(\theta_{13}), s_{23} = sin(\theta_{23})$$
$$c_{12} = cos(\theta_{12}), c_{13} = cos(\theta_{13}), c_{23} = cos(\theta_{23})$$

3 Neutrino Masses

Neutrino Masses & Mixings

$$m_{\nu} = U^T \, m_{\nu}^D \, U$$

 $m_{\nu}^{D} = \left(\begin{array}{ccc} m_{1} & 0 & 0\\ 0 & m_{2} & 0\\ 0 & 0 & m_{3} \end{array}\right)$

3 Neutrino Masses

2 Majorana Phases

3 Mixing Angles, 1 CP Phase $s_{12} = sin(\theta_{12}), s_{13} = sin(\theta_{13}), s_{23} = sin(\theta_{23})$ $c_{12} = cos(\theta_{12}), c_{13} = cos(\theta_{13}), c_{23} = cos(\theta_{23})$

= 0.026

Global Fit to Neutrino Oscillation Data:

D. V. Forero, M. Tortola and J. W. F. Valle, Phys. Rev. D 86 (2012) 073012

$$\Delta m_{21}^2 \equiv m_2^2 - m_1^2 = 7.62^{+0.19}_{-0.19} \times 10^{-5} \text{eV}^2 \qquad \left| \Delta m_{31}^2 \right| \equiv \left| m_3^2 - m_1^2 \right| = 2.53^{+0.08}_{-0.1} \times 10^{-3} \text{eV}^2$$

 $s_{12}^2 = 0.320_{-0.017}^{+0.015}$ $s_{23}^2 = 0.49_{-0.05}^{+0.08}$ s_{13}^2

$$m_1, \alpha_1, \alpha_2$$
 Not Constrained
 δ Beyond Exp. Sensitivity
"Large" θ_{13}

O Neutrino Masses & Mixings

Cocktail Model

$$m_{\nu_{ab}} \propto m_{l_a} m_{l_b} C_{ab} \simeq \begin{pmatrix} 0 & 0 & m_{e\tau} \\ 0 & m_{\mu\mu} & m_{\mu\tau} \\ m_{e\tau} & m_{\mu\tau} & m_{\tau\tau} \end{pmatrix}$$

Approximate V Mass Texture

 m_1, α_1, α_2 Not Constrained

 δ Beyond Exp. Sensitivity

Global Fit to Neutrino Oscillation Data:

D. V. Forero, M. Tortola and J. W. F. Valle, Phys. Rev. D 86 (2012) 073012

$$\Delta m_{21}^2 \equiv m_2^2 - m_1^2 = 7.62^{+0.19}_{-0.19} \times 10^{-5} \mathrm{eV}^2 \qquad \left| \Delta m_{31}^2 \right| \equiv \left| m_3^2 - m_1^2 \right| = 2.53^{+0.08}_{-0.1} \times 10^{-3} \mathrm{eV}^2$$

 $s_{12}^2 = 0.320_{-0.017}^{+0.015}$ $s_{23}^2 = 0.49_{-0.05}^{+0.08}$

Neutrino Masses & Mixings

Cocktail Model
Prediction $m_{\nu_{ab}} \propto m_{l_a} m_{l_b} C_{ab} \simeq \begin{pmatrix} 0 & 0 & m_{e\tau} \\ 0 & m_{\mu\mu} & m_{\mu\tau} \\ m_{e\tau} & m_{\mu\tau} & m_{\tau\tau} \end{pmatrix}$

Approximate V Mass Texture

→ Texture Predicts Normal Hierarchy

Global Fit to Neutrino Oscillation Data:

D. V. Forero, M. Tortola and J. W. F. Valle, Phys. Rev. D 86 (2012) 073012

$$\Delta m^2_{21} \equiv m^2_2 - m^2_1 = 7.62^{+0.19}_{-0.19} \times 10^{-5} \mathrm{eV}^2 \qquad \left| \Delta m^2_{31} \right| \equiv \left| m^2_3 - m^2_1 \right| = 2.53^{+0.08}_{-0.1} \times 10^{-3} \mathrm{eV}^2$$

 $s_{12}^2 = 0.320_{-0.017}^{+0.015}$ $s_{23}^2 =$

$$a_3 = 0.49^{+0.08}_{-0.05}$$

Neutrino Masses & Mixings

Cocktail Model $m_{\nu_{e}}$ Prediction

$$m_{\nu_{ab}} \propto m_{l_a} m_{l_b} C_{ab} \simeq \left(\begin{array}{ccc} 0 & 0 & m_{e\tau} \\ 0 & m_{\mu\mu} & m_{\mu\tau} \\ m_{e\tau} & m_{\mu\tau} & m_{\tau\tau} \end{array} \right)$$

Approximate V Mass Texture

→ Texture Imposes $Re(m_{ee}) \simeq 0$, $Im(m_{ee}) \simeq 0$, $Re(m_{e\mu}) \simeq 0$, $Im(m_{e\mu}) \simeq 0$

Prediction for $m_1, \alpha_1, \alpha_2, \delta$

Global Fit to Neutrino Oscillation Data:

D. V. Forero, M. Tortola and J. W. F. Valle, Phys. Rev. D 86 (2012) 073012

$$\Delta m_{21}^2 \equiv m_2^2 - m_1^2 = 7.62^{+0.19}_{-0.19} \times 10^{-5} \text{eV}^2 \qquad \left| \Delta m_{31}^2 \right| \equiv \left| m_3^2 - m_1^2 \right| = 2.53^{+0.08}_{-0.1} \times 10^{-3} \text{eV}^2$$

 $s_{12}^2 = 0.320_{-0.017}^{+0.015}$

$$s_{23}^2 = 0.49_{-0.05}^{+0.08}$$

δ Beyond Exp. Sensitivity "Large" θ 13

 m_1, α_1, α_2 <u>Not Constrained</u>

1 Neutrino Masses & Mixings

Cocktail Model mPrediction

$$m_{
u_{ab}} \propto m_{l_a} m_{l_b} C_{ab} \simeq \left(egin{array}{ccc} 0 & 0 & m_{e au} \ 0 & m_{\mu\mu} & m_{\mu au} \ m_{e au} & m_{\mu au} & m_{ au au} \end{array}
ight)$$

Approximate V Mass Texture

→ Texture Imposes $Re(m_{\rho\rho}) \simeq 0$, $Im(m_{\rho\rho}) \simeq 0$, $Re(m_{\rho\mu}) \simeq 0$, $Im(m_{\rho\mu}) \simeq 0$

Solutions Only Exist for $0.014 < s_{13}^2 < 0.023$ (0.011 < $s_{13}^2 < 0.035$)

Global Fit to Neutrino Oscillation Data:

D. V. Forero, M. Tortola and J. W. F. Valle, Phys. Rev. D 86 (2012) 073012

$$\Delta m_{21}^2 \equiv m_2^2 - m_1^2 = 7.62^{+0.19}_{-0.19} \times 10^{-5} \text{eV}^2 \qquad \left| \Delta m_{31}^2 \right| \equiv \left| m_3^2 - m_1^2 \right| = 2.53^{+0.08}_{-0.1} \times 10^{-3} \text{eV}^2$$

 $s_{12}^2 = 0.320^{+0.015}_{-0.017}$

$$s_{23}^2 = 0.49_{-0.05}^{+0.08}$$

05

 m_1, α_1, α_2 Not Constrained δ Beyond Exp. Sensitivity

Neutrino Masses & Mixings

Cocktail Model Prediction

$$m_{\nu_{ab}} \propto m_{l_a} m_{l_b} C_{ab} \simeq \begin{pmatrix} 0 & 0 & m_{e\tau} \\ 0 & m_{\mu\mu} & m_{\mu\tau} \\ m_{e\tau} & m_{\mu\tau} & m_{\tau\tau} \end{pmatrix}$$

Approximate V Mass Texture

→ Texture Imposes $Re(m_{ee}) \simeq 0$, $Im(m_{ee}) \simeq 0$, $Re(m_{e\mu}) \simeq 0$, $Im(m_{e\mu}) \simeq 0$

Solutions Only Exist for 0.014 < s_{13}^2 < 0.023 (0.011 < s_{13}^2 < 0.035) Global Fit to Neutrino Oscillation Data: D. V. Forero, M. Tortola and J. W. F. Valle, Phys. Rev. D 86 (2012) 3012 $\Delta m_{21}^2 \equiv m_2^2 - m_1^2 = 7.62^{+0.19}_{-0.19} \times 10^{-5} \text{eV}^2$ $|\Delta m_{31}^2| \equiv |m_3^2 - m_1^2| = 2.55$ $\theta_{13}^{08} \times 10^{-3} \text{eV}^2$ $s_{12}^2 = 0.320^{+0.015}_{-0.017}$ $s_{23}^2 = 0.49^{+0.08}_{-0.05}$ $s_{13}^2 = 0.026^{+0.003}_{-0.004}$

2 Electroweak Precision Constrains

 $H_0, A_0, H_1^+, H_2^+, \rho^{++}$ Contribute to EWPO (S, T Parameters)

$$\Delta T \sim \frac{1}{24 \pi^2 \,\alpha_{\rm EM} v^2} \left[(m_{H_1}^2 - m_{A_0}^2)(m_{H_1}^2 - m_{H_0}^2) + (m_{H_2}^2 - m_{A_0}^2)(m_{H_2}^2 - m_{H_0}^2) \right] + \Delta T_{\rho}$$

$$m_{H_0} = m_{DM} = 65 \text{ GeV}, m_2 = 5 \text{ TeV}$$

3 Lepton Flavour Violation Constrains

$$\begin{array}{ll} \mu \to 3e & C_{e\mu} \, C_{ee} < 1.2 \times 10^{-11} {\rm GeV}^{-2} \, m_{\rho}^{2} \\ \tau \to 3e & C_{e\tau} \, C_{ee} < 1.3 \times 10^{-8} {\rm GeV}^{-2} \, m_{\rho}^{2} \\ \tau \to 3\mu & C_{\mu\tau} \, C_{\mu\mu} < 1.2 \times 10^{-8} {\rm GeV}^{-2} \, m_{\rho}^{2} \\ \tau^{-} \to \mu^{+} \, e^{-} \, e^{-} & C_{\mu\tau} \, C_{ee} < 9.3 \times 10^{-9} {\rm GeV}^{-2} \, m_{\rho}^{2} \\ \tau^{-} \to e^{+} \, e^{-} \, \mu^{-} & C_{e\tau} \, C_{e\mu} < 1.7 \times 10^{-8} {\rm GeV}^{-2} \, m_{\rho}^{2} \\ \tau^{-} \to \mu^{+} \, \mu^{-} \, e^{-} & C_{\mu\tau} \, C_{e\mu} < 1.8 \times 10^{-8} {\rm GeV}^{-2} \, m_{\rho}^{2} \\ \tau^{-} \to e^{+} \, \mu^{-} \, \mu^{-} & C_{e\tau} \, C_{\mu\mu} < 1.0 \times 10^{-8} {\rm GeV}^{-2} \, m_{\rho}^{2} \\ \tau^{-} \to e^{+} \, \mu^{-} \, \mu^{-} & C_{e\tau} \, C_{\mu\mu} < 1.0 \times 10^{-8} {\rm GeV}^{-2} \, m_{\rho}^{2} \\ \tau^{-} \to e^{+} \, \mu^{-} \, \mu^{-} & C_{e\tau} \, C_{\mu\mu} < 1.0 \times 10^{-8} {\rm GeV}^{-2} \, m_{\rho}^{2} \\ \mu \to e\gamma & \sum C_{l\mu} \, C_{le} < 4.7 \times 10^{-9} {\rm GeV}^{-2} \, m_{\rho}^{2} \\ \tau \to e\gamma & \sum C_{l\tau} \, C_{le} < 1.05 \times 10^{-6} {\rm GeV}^{-2} \, m_{\rho}^{2} \end{array}$$

Most Stringent Constrains are on $\boldsymbol{m}_{e\tau}$ and $\boldsymbol{m}_{\mu\mu}$:

 \rightarrow **1** + **3** Set $m_{\mu_2}^2 > TeV$, $m_{\mu_0}^2 - m_{\mu_0}^2 \sim V^2$, $m_{\mu_1}^2 - m_{\mu_2}^2 \sim V^2$

Need Heavy ho^{++} & Large Mass Splittings

- **4** Collider Phenomenology
- \rightarrow Modification of $h \rightarrow \gamma \gamma$ Branching Ratio
- $\rightarrow H_0, A_0, H_1^+, H_2^+$ States Accesible at LHC

- **4** Collider Phenomenology
- \rightarrow Modification of $h \rightarrow \gamma \gamma$ Branching Ratio
- $\rightarrow H_0, A_0, \overline{H_1^+}, \overline{H_2^+}$ States Accesible at LHC
- **5** Neutrinoless Double β-Decay
- $\rightarrow m_{ee} \sim 0$, But Still Potentially Large $0\nu\beta\beta!!$
- \rightarrow Leading Contribution to $0\nu\beta\beta$ Independent of M_{ν}

6 Dark Matter (IDM)

→ Large Mass Splitting M²_{Ao} - M²_{Ho}
Disfavours Co-Annihilation

 $\rightarrow Direct Detection Bounds Impose m_{_{DM}} \\ Close to Higgs Resonance or W Threshold$

M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom Phys. Rev. D **86** (2012) 075019

Conclusions

Small ν Masses May be Connected to Dark Matter Stability

Properties of ν Sector and DM Sector Affected by this Connection:

→ ν_p as DM Candidate (Ma; Krauss, Nasri, Trodden)

NO Dark Matter Direct Detection Signal

- → Cocktail Model
- → Predicts Normal \mathcal{V} Mass Hierarchy & 0.011 < s_{13}^2 < 0.035
- → LFV Close to Current Experimental Limits
- → Collider Signatures at LHC & ILC (New charged States)
- $\Rightarrow (Possibly) Large 0 \lor \beta \beta$

→ DM Co-Annihilation Disfavoured ($m_{DM} \sim 60 - 65$ GeV