

Low momentum track finding in the Silicon Vertex Detector of Belle 2

Jakob Lettenbichler, Rudolf Frühwirth

Institute of High Energy Physics Austrian Academy of Sciences

November 29, 2012

Motivation 000

Important for Track Finding

Motivation

- new Si detector (windmill, slanted for small θ) for Si-only track finding
 - SVD: 4 layers (double sided strips \rightarrow fast but ghost hits)
 - PXD: 2 layers pixel \rightarrow slow but no ghosts, higher resolution)
- reconstruct low momenta $(p_T \ge 50 \text{MeV}/c)$ using 3-4 layers
- higher luminosity, 5x10⁸ bunch-crossings/s, 30k events/s, 10 tracks each
- therefore higher background (Touschek, Bhabha scattering)

Table: Resolution taken from the software framework, the rest from the TDR. The u-coordinate of position measurement is orthogonal and the z-coordinate is parallel to the beam line. Values are subject to change.

Layer	Type	Radius	Resolution <i>u</i>	Resolution z	Thickness
1	PXD	13 mm	14.4 μm	15.9 μm	75 μm
2	PXD	22 mm	14.4 μm	$24.5 \mu m$	75 μm
3	SVD	38 mm	14.5 μm	$45.1\mu m$	320 μm
4	SVD, w slanted part	80 mm	21.7 μm	69.3 μm	320 μm
5	SVD, w slanted part	115 mm	21.7 μm	69.3 μm	320 μm
6	SVD, w slanted part	140 mm	$21.7\mu m$	69.3 μm	320 μm

Definitions

- sector: subunit of a sensor
- friends: two compatible sectors combined
- segment: two compatible hits combined
- neighbours (NBs): two compatible segments combined
- hits: 1u + 1v SVDCluster = 2D info
- effifiency: is 100%, when all tracks which produced at least 3 hits could be reconstructed
- a track is is successfully reconstructed through a TC, when at least 3 hits of the track have been found and less than 30% of the hits are garbage

MHEPHY

TF Overview

- single hits are combined to segments which form TC's when connected
 → combinatorial problem
- gradually filtering reduces combinatorics with increasing complexity
- using fastest filters first → starting with sectormap (see following slides) as a single hit-filter
- using typical CA-filters with min- and max-cutoffs (2-hit: hit-distance, 3-hit: angle of linked segments, 4-hit: zig-zag, Δp_{T})
- quality of chosen cutoffs is essential:
 - ullet to loose o more ghosts, slower
 - to narrow → lose real tracks
 - what about momentum dependency?

Motivation using sectors:

- \bullet windmill structure and slanted sensors forbid simple layer-wise cutoffs \to at least sensor-specific cutoffs needed
- better: subdividing sensors in sectors and storing friend-lists
- ullet ightarrow allows customized cutoffs for filters to reduce combinatorics
- ullet ightarrow allows multipass optimizing for different momenta and curling tracks

store info in a sectorMap

MHEPHY

```
sectorList high SVD>
 <aFriend>
   <FriendOfInterest>30 25664 6</FriendOfInterest>
```


Motivation using multi pass support

- allows several passes for same hits (of same event) using different sector setups and individual cutoffs
- number of passes arbitrary
- missing: hit removal and curling track pass, both will take some time for implementation

Adapting CA principle for 3-4 layers, virtual segment and sectors

basic concept of cells

extended concept using virtual segments attached to the IP and sectorMaps for segments in overlapping parts

Constructing and cleaning TCs

- New TCs start with a seed (cells with high states), grows inwards by attaching cells with decreasing value of state
- after the TC-collector (TCC), overlapping TCs are filtered to find clean subset
- post-TCC-Filter applies simple rules like zigg-zagg or $\Delta p_{\rm T}$
- a Kalman filter calculates a quality index → probability that current TC is a real track
- a Hopfield network searches clean subset of overlapping TCs → uses QI's for decision-making

settings - beware alfa-release!

- pGun: $1 \operatorname{track}(T)/10T$ pions with $45 \operatorname{MeV}/c \le p_T \le 500 \operatorname{MeV}/c$ without (1T) and with BG (10T)
- in the following slides "low" means 60 MeV/c (= 13cm circle radius), "high" means 500/c (= 100cm circle radius)
- evtGen: standard setting $(\Upsilon(4S))$ with and without BG. Efficiencies calculated for different momentum ranges
- all runs: SVD only
- 3 pass: low: 3 layers, $45 \text{MeV}/c \le p_T \le 80 \text{MeV}/c$, std: 4 layers, $75 \text{MeV}/c \le p_T \le 200 \text{MeV}/c$, high: 4 layers, $180 \text{MeV}/c \le p_T \le 1200 \text{MeV}/c$
- $16^{\circ} \le \theta \le 151^{\circ}$
- 6 sectors per sensor u-boundaries (normed to sensor size):
 0, 0.5, 1. v-boundaries: 0, 0.33, 0.67, 1

efficiencies w 1T and 10T pions

MHEPHY

MHEPHY

$\hbox{$3$-pass-efficiency under evtGen depending on momentum range}\\$

HEPHY

evtGen - dependency of heta

MHEPHY

3-pass-efficiency under evtGen depending on theta range

17-2431 -38 -45 -52 -59 -66 -73 -80 -87 -94-101-108-115-122-129-136-143-150

low p_T - dependency of θ , small effect in slanted parts

3-pass-efficiency under evtGen depending on theta range

17-2431 -38 -45 -52 -59 -66 -73 -80 -87 -94-101-108-115-122-129-136-143-150

low p_T - dependency of θ , big effect in slanted parts

17-2431 -38 -45 -52 -59 -66 -73 -80 -87 -94-101-108-115-122-129-136-143-150

charge - dependency and time consumption

 $\hbox{$3$-pass-efficiency under evtGen depending on particle charge}_{\hbox{\tiny time consumption with pions-single pions}} under evtGen depending on particle charge$

measured with my 7 year old notebook, 1,66GHz Core(1) Duo, debug mode

HEPHY Wien & BELLE Collaboration

Online-specs

- PXD 1000 times slower than SVD and has rolling shutter readout
- o roughly 5000 PXDclusters per ROF ~ 25 real ones, rest: background
- low momentum TF needed for online data reduction

ToDo

- checking PXD-performance under realistic event- and background conditions
- support curling tracks (idea: use an additional setup for curling tracks and combine afterwards)
- fine-tuning for sectormaps, filters and hit-removal (new student will do part of this work)
- developing online version (my future main project, starts 2013Q1)

that's all, folks!

MHEPHY

Any suggestions, ideas or requests? Jakob.Lettenbichler@oeaw.ac.at

