
CMS reconstruction overview
and plans

28.11.2012
Fourth international workshop for Future Challenges in

Tracking and Trigger concepts
GSguazzoni

https://indico.cern.ch/contributionDisplay.py?sessionId=0&contribId=7&confId=210641
https://indico.cern.ch/contributionDisplay.py?sessionId=0&contribId=7&confId=210641
https://indico.cern.ch/contributionDisplay.py?sessionId=0&contribId=7&confId=210641
https://indico.cern.ch/contributionDisplay.py?sessionId=0&contribId=7&confId=210641

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Outline
= A glimpse on the CMS tracking implementation

= The tracking evolution from 2011 to 2012

= The challenge of 2015 data taking

= Multi threading, vectorization, parallelization

= Raw ideas for new tracking algorithms

For help and material, many thanks to: KStenson, GCerati, THauth, CJones,
GEulisse, ...

2

The world largest Silicon Tracker

3

TIB
Inner Barrel
4 layers TID

Inner Disks
3+3 disks

TEC Endcap
9+9 disks

Tracker
Support
Tube

TOB
Outer Barrel
6 layers

L~5.4m
∅~2.4m

PXL
Pixel Detector
3 layers, 2+2 disks

Pixel Detector
66M channels

100x150 μm2 pixel
LHC radiation resistant

Si-Strip detector
~23m3; ~200m2 of Si area;

~9x106 channels;
LHC radiation resistant

The CMS Silicon Tracker Layout

4

Double Sided
Single Sided

η=2.5

50 120

η=0.9

280

TECTOB

TIB TID
20

54

110

z [cm]

R
[cm]

PXL

Basic Performances
 σ(PT)/PT ~1-2% (PT~100 GeV/c)

IP resolution ~10-20μm (PT=100-10 GeV/c)

Tracker Material

The CMS Tracker is a ~4T object made
up of assorted and diverse materials!

Accurate simulation is crucial.

Large contribution comes from service
volumes for 1.0<η<1.6; some tracks
intercept these volumes three times.

5

∑x*X0-1[cm-1] ~density of γ conversion tracks
X0-1 ~density of γ conversion vertices (only z+ side)

~1.7X0 ~0.4X0

Overview of track reconstruction in CMS

6

CMS tracking in a nutshell

7

Seeding starts from innermost pixel
layers (pairs + PV, triplets).
Inside-out trajectory building through
pattern recognition (based on Kalman
Filter).

Rejection of outlier hits and final fit,
also based on Kalman Filter.
Final quality selection of tracks.
Primary Vertex used in tracking
derived from pixel-based algorithm.

Track Parameters: q/p, η, φ, dZ, dXY
Parameters propagated through magnetic field inhomogeneities

using Runge-Kutta propagator

✘✘ ✔ x

Iterative tracking

8

The CMS tracking relies on iterations (steps) of the tracking procedure;
each step works on the remaining not-yet-associated hits and is optimized
with respect to the seeding topology and to the final quality cuts.

Iterative tracking. A factor 2.5 of improvement in the CPU time has been obtained by
optimizing the iterative tracking, as detailed in table 2 to be compared with table 1 that
summarizes the baseline configuration of CMSSW 4.2.x. As can be seen, the net e↵ect
is an increase of the e↵ective PT threshold for track reconstruction together with tighter
constraint on impact parameter. This configuration results into a reduced e�ciency for PT

lower than 300MeV/c but an e�ciency for PT greater than 0.9GeV/c larger by ⇠ 1% with
a ⇠ 8% reduction of the fake rate.

Reconstruction of photon conversions. Reconstruction of photon conversion in the tracker
volume is heavily a↵ected by the higher PT threshold and by the tighter impact parameter
cuts since conversion tracks are typically soft and displaced. To recover this loss, a
dedicated seeding has been deployed [6] and the photon conversion reconstruction has been
further optimized resulting in a factor 12 improvement of the CPU time for conversion
reconstruction.

Reconstruction of primary vertices. The reconstruction of primary vertices in the event
has been optimized by integrating into the same module all the di↵erent reconstruction
methods; the removal of the overhead due to the module split we had beforehand was
enough to gain a factor two in CPU time in this specific context.

Reconstruction of nuclear interactions. Similarly to photon conversions, also nuclear
interactions are reconstructed for tracker material studies and to correctly estimate

Table 1. Relevant parameters of the six iterative tracking steps in CMSSW 4.2.x, i.e. before
the reconstruction improvement campaign described in this paper; � represents the beam spot
size along the z axis and d0 and z0 are the transverse (i.e. in the xy plane) and longitudinal
impact parameters, respectively.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.8 0.2 cm 3.0�
1 pair pixel/TEC 0.6 0.05 cm 0.6 cm
2 triplet pixel 0.075 0.2 cm 3.3�
3 triplet pixel/TIB/TID/TEC 0.25-0.35 2.0 cm 10.0 cm
4 pair TIB/TID/TEC 0.5 2.0 cm 12.0 cm
5 pair TOB/TEC 0.6 6.0 cm 30.0 cm

Table 2. Relevant parameters of the seven tracking iterative steps in CMSSW 4.4.x, after the
first phase of the improvement campaign in fall 2011; in bold the parameters changed with
respect to the corresponding steps in CMSSW 4.2.x (see table 1); step #1 is brand new with
respect to CMSSW 4.2.x; see table 1 caption for symbol definitions.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.03 cm 4.0�
1 triplet pixel 0.2 0.03 cm 4.0�
2 pair pixel 0.6 0.01 cm 0.09 cm
3 triplet pixel 0.2 1.0 cm 4.0�
4 triplet pixel/TIB/TID/TEC 0.35-0.5 2.0 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

Iterative tracking in 2011 (CMSSW 42x)

Tracking evolution from
from 1032/cm2/s (2011)
to 8×1033/cm2/s (2012)

aka the standard way to improve...

9

28.11.2012 GSguazzoni CMS reconstruction overview and plans

The constraint of prompt reconstruction
Prompt reconstruction is crucial for a discovery experiment: quasi real-
time physics results, fast deep feedback on detector conditions. It requires
data to be processed at the same pace as they are produced. Resources
and algorithm speed must adapt to the instantaneous luminosity. The
tracking reconstruction software was too heavy (CPU time and memory)
for prompt reconstruction and it was improved in two phases: fall 2011,
spring 2012.

10

20
15

 e
st

im
at

es

20

28.11.2012 GSguazzoni CMS reconstruction overview and plans

implementation and do not change the physics outcome of the tracking reconstruction workflow.
They are mainly targeted to reduction and better handling of the memory and in fact they allow
for a 40% cut of the memory budget. These modifications are described below in more detail.

Copy-less hit masking within the iterative tracking. Each step of the iterative tracking,
but the first, works on the hits not yet associated to any track. Technically this was
implemented by creating a new collection of surviving hits at each step. To save memory,
a masking algorithm has been implemented adding to the hit object an appropriate data
member for the masking bits. Results are unchanged with a major reduction of the allocated
memory.

Batch cleaning of track candidates. The track candidate results from a seed that has been
successfully propagated. Before being declared as a reconstructed track, the track candidate
must undergo a filtering selection to reject fakes. To avoid storing too much track candidates
in memory, the cleaning procedure is done once a subsample of 1000 track candidates has
been accumulated with large benefit on the overall required memory.

E�cient quality assignment. Each step in the iterative tracking assigns tracks to a quality
tier. Old implementation of the algorithm just created a copy of the same track per each
quality tier it was belonging to; this has been modified by removing the copying and adding
an appropriate data member to store the quality tier bits with an obvious advantage on the
memory consumption.

E�cient track merging. After all iterative steps, the resulting track collections have to be
merged and further cleaned from potential fake tracks and duplicated tracks. In fact, only
hits associated to tracks with highest quality, know in CMS as high purity tracks, are not
used in the following steps. But hits associated to lower quality tracks are retained, in the
attempt to build better tracks out of them with di↵erent seed and propagation parameters.
The old implementation of the merging algorithm compared the collection created by the
various steps in pairs creating intermediate collections to be further compared with other
collections up to the end of the process. In the updated version all track collections feed a
merging module that works without creating any intermediate collection. This is pictorially
shown in figure 4.

The second group of ameliorations directly a↵ects the algorithms and thus the outcome
on observables and has to be evaluated also with respect to performances on physics. These
modifications target the CMSSW modules related to tracking that are dominating, in terms of
CPU time, the entire reconstruction chain and are described in the following.

Figure 4. Schematical representation of the old (left) and the new (right) merging algorithm for
an hypothetical iterative tracking with five steps; “intermediate” track collections are avoided
in the new algorithm and this allows for consistent memory savings.

Fall 2011 campaign: from CMSSW42x to 44x (1)
Copy-less hit masking Each step of the iterative tracking works on the hits
not yet associated to any track. This was done by creating a new collection of
surviving hits at each step. Implemented a data member to store masking bits
Batch cleaning of seeds successfully propagated (track candidates) The track
candidates are filtered in 1k batches to avoid storing too many of them
Efficient quality assignment Each iterative step assigns tracks to a quality tier.
Old implementation just created a track copy per each tier; implemented a
data member to store the quality tier bits
Efficient track merging The track collections resulting from steps have to be
merged and cleaned. The merging algorithm has been improved by getting
rid of intermediate collections.

11

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Fall 2011 campaign: from CMSSW42x to 44x (2)
Particle flow links The PF algorithm links tracks to calorimetric clusters in the
(η,φ) space. Done in 42x by CPU intensive nested loops, with a complexity
that scales quadratically with the multiplicity N. In 44x implemented a kd-
tree based algorithm: the (η,φ) space is split into appropriate domains, each
containing one single object, organized in a tree. The cluster closest to a
given track is found with a very fast binary search that ends up in the closest
neighbor domain. The complexity that scales as N·logN. Already extended to
other CMSSW modules by the implementation of a generic kd-tree class.

12Figure 5. Pictorial representation of the kd-tree algorithm in the case of a very simple neighbor
search problem in the (⌘,�) plane: a track (represented by the “⇥” symbol) needs to be
associated to one of the calorimetric clusters represented by the dots labelled with letters. On
the left panel it is shown the way (⌘,�) is split into domains and the resulting navigation tree
is sketched on the right.

the hadronic energy fraction in jets within the Particle Flow, the global event
reconstruction [7][8], that consists in reconstructing and identifying each single particle
with an optimized combination of all subdetector information. To avoid consuming CPU
time in the heavy vertex fit with candidates that are very likely to be fakes, a very simple
preselection has been implemented: a nuclear interaction candidate track is kept only if PT

exceeds 800MeV/c, in case of primary tracks, or if the impact parameter in the xy plane
is larger then 2mm for secondary tracks; the vertex candidate must have at least three
tracks (one primary and two secondaries or three secondaries) and, finally, candidates are
discarded if the secondary vertex estimate falls within the beam pipe. These simple criteria
are enough to reduce the combinatorics such that the nuclear interaction reconstruction
gains a factor 5 in CPU time with no observable degradation in physics performances.

Particle flow links. The Particle Flow algorithm needs to link tracks to calorimetric clusters
in the (⌘,�) parameter space. This problem of nearest neighbor search over a large number
of objects in CMSSW 4.2.x is implemented with nested loops and results to be rather time
intensive. Moreover the complexity scales quadratically (N2) as the object multiplicity N

increases. In CMSSW 4.4.x the well known linearization technique known as kd-tree [9] has
been introduced to replace nested loops. The method consists in an algorithm that, starting
from a collection of objects (calorimetric cluster, for example), dynamically splits the (⌘,�)

Figure 6. Breakdown of the
average CPU time per event in
arbitrary units before and after ‘Fall
2011’ for each improvement area of
the tracking reconstruction software
(simulated QCD events with 30 pile-
up interactions).

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Fall 2011 campaign: from CMSSW42x to 44x (3)
Several optimization in object reconstruction like photon conversion,
vertices, nuclear interactions with significant CPU time gain
Iterative tracking A factor 2.5 of improvement in the CPU time has been
obtained by optimizing the iterative tracking. The net effect is an increase of
the effective PT threshold for track reconstruction together with tighter
constraints on impact parameter. This configuration results in a reduced
efficiency for PT <300MeV/c but an efficiency for PT>0.9 GeV/c larger by
∼1% with a ∼8% reduction of the fake rate.

13

Iterative tracking. A factor 2.5 of improvement in the CPU time has been obtained by
optimizing the iterative tracking, as detailed in table 2 to be compared with table 1 that
summarizes the baseline configuration of CMSSW 4.2.x. As can be seen, the net e↵ect
is an increase of the e↵ective PT threshold for track reconstruction together with tighter
constraint on impact parameter. This configuration results into a reduced e�ciency for PT

lower than 300MeV/c but an e�ciency for PT greater than 0.9GeV/c larger by ⇠ 1% with
a ⇠ 8% reduction of the fake rate.

Reconstruction of photon conversions. Reconstruction of photon conversion in the tracker
volume is heavily a↵ected by the higher PT threshold and by the tighter impact parameter
cuts since conversion tracks are typically soft and displaced. To recover this loss, a
dedicated seeding has been deployed [6] and the photon conversion reconstruction has been
further optimized resulting in a factor 12 improvement of the CPU time for conversion
reconstruction.

Reconstruction of primary vertices. The reconstruction of primary vertices in the event
has been optimized by integrating into the same module all the di↵erent reconstruction
methods; the removal of the overhead due to the module split we had beforehand was
enough to gain a factor two in CPU time in this specific context.

Reconstruction of nuclear interactions. Similarly to photon conversions, also nuclear
interactions are reconstructed for tracker material studies and to correctly estimate

Table 1. Relevant parameters of the six iterative tracking steps in CMSSW 4.2.x, i.e. before
the reconstruction improvement campaign described in this paper; � represents the beam spot
size along the z axis and d0 and z0 are the transverse (i.e. in the xy plane) and longitudinal
impact parameters, respectively.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.8 0.2 cm 3.0�
1 pair pixel/TEC 0.6 0.05 cm 0.6 cm
2 triplet pixel 0.075 0.2 cm 3.3�
3 triplet pixel/TIB/TID/TEC 0.25-0.35 2.0 cm 10.0 cm
4 pair TIB/TID/TEC 0.5 2.0 cm 12.0 cm
5 pair TOB/TEC 0.6 6.0 cm 30.0 cm

Table 2. Relevant parameters of the seven tracking iterative steps in CMSSW 4.4.x, after the
first phase of the improvement campaign in fall 2011; in bold the parameters changed with
respect to the corresponding steps in CMSSW 4.2.x (see table 1); step #1 is brand new with
respect to CMSSW 4.2.x; see table 1 caption for symbol definitions.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.03 cm 4.0�
1 triplet pixel 0.2 0.03 cm 4.0�
2 pair pixel 0.6 0.01 cm 0.09 cm
3 triplet pixel 0.2 1.0 cm 4.0�
4 triplet pixel/TIB/TID/TEC 0.35-0.5 2.0 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

Iterative tracking in late 2011 (CMSSW 44x) / In bold the changes with respect to 42x

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Results of fall 2011 campaign

reconstruction CPU time @30PU | reconstruction CPU time vs. PU
Simulated QCD events

14

Figure 5. Pictorial representation of the kd-tree algorithm in the case of a very simple neighbor
search problem in the (⌘,�) plane: a track (represented by the “⇥” symbol) needs to be
associated to one of the calorimetric clusters represented by the dots labelled with letters. On
the left panel it is shown the way (⌘,�) is split into domains and the resulting navigation tree
is sketched on the right.

the hadronic energy fraction in jets within the Particle Flow, the global event
reconstruction [7][8], that consists in reconstructing and identifying each single particle
with an optimized combination of all subdetector information. To avoid consuming CPU
time in the heavy vertex fit with candidates that are very likely to be fakes, a very simple
preselection has been implemented: a nuclear interaction candidate track is kept only if PT

exceeds 800MeV/c, in case of primary tracks, or if the impact parameter in the xy plane
is larger then 2mm for secondary tracks; the vertex candidate must have at least three
tracks (one primary and two secondaries or three secondaries) and, finally, candidates are
discarded if the secondary vertex estimate falls within the beam pipe. These simple criteria
are enough to reduce the combinatorics such that the nuclear interaction reconstruction
gains a factor 5 in CPU time with no observable degradation in physics performances.

Particle flow links. The Particle Flow algorithm needs to link tracks to calorimetric clusters
in the (⌘,�) parameter space. This problem of nearest neighbor search over a large number
of objects in CMSSW 4.2.x is implemented with nested loops and results to be rather time
intensive. Moreover the complexity scales quadratically (N2) as the object multiplicity N

increases. In CMSSW 4.4.x the well known linearization technique known as kd-tree [9] has
been introduced to replace nested loops. The method consists in an algorithm that, starting
from a collection of objects (calorimetric cluster, for example), dynamically splits the (⌘,�)

Figure 6. Breakdown of the
average CPU time per event in
arbitrary units before and after ‘Fall
2011’ for each improvement area of
the tracking reconstruction software
(simulated QCD events with 30 pile-
up interactions).

Figure 7. Total reconstruction
CPU time per event (in arbitrary
units) for as a function of pile-up
events for simulated QCD events
for the baseline CMSSW and the
improved version.

space into appropriate domains, each containing one single object, organized in a tree. The
closest cluster to a given track can be found by exploring the (⌘,�) space with a very fast
binary search that ends up in the closest neighbor domain. This algorithm, schematically
represented in figure 5, has a complexity that scales as N · logN , thus more convenient with
respect to standard nested loops especially for large multiplicity, and allows to gain a factor
4 in CPU time in this specific application. Its extension to other modules of CMSSW is
being studied.

The results of the improvements just described are graphically represented in figure 6 and
figure 7. In the former the breakdown of the CPU time for each improvement area before
and after each improvement is reported for simulated QCD events with 30 pile-up interactions
per event; in the latter the total CPU time is shown as a function of the number of pile-up
interactions for simulated QCD events.

The CMSSW 4.4.x releases derived from the “fall 2011” campaign have been fully validated
and have been accepted for production since changes in performaces are minor with respect to
physics outcome.

3. Spring 2012 campaign
The modifications put in place in the second phase of the improvement campaign have been
developed on top of CMSSW version 4.4.x and implemented in the CMSSW version 5.2.x.
Again a group of improvements are based on better coding and technological improvements and
do not change the physics outcome. More in detail, these modifications are described below.

Change of compiler version. The implementation of CMSSW 5.2.x has been accompanied
by the switch from gcc 4.3.4 to gcc 4.6.2 to produce binaries. This latter compiler version
allows for faster code to be generated also thanks to some compiler specific optimizations.
The net gain is up to 10% as shown in figure 8 where the reduction in CPU time is shown as
a function of the number of pile-up vertices for simulated QCD events. Other features that
came along the new compiler version are the C++11 standard support and autovectorization
flags on by default.

JEMalloc. The concurrent malloc implementation JEMalloc, highly performant and able to
better redeem memory, has been implemented in place of the standard malloc.

Switch to improved ROOT version. The ROOT package version has been changed from
5.27 to 5.32 that features several improvements, especially in I/O with less memory required.

Several design modifications to improve speed and memory consumption. The code
has been again carefully reviewed and many improvements have been implemented. Several

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Spring 2012 campaign: from CMSSW44x to 52x (1)

Change of compiler switch from
gcc 4.3.4 to gcc 4.6.2: faster code
generated (compiler specific
optimizations), C++11 support
and autovectorization

JEMalloc standard malloc
replaced by JEMalloc, highly
performant and able to better
redeem memory
Improved ROOT version from 5.27 to 5.32 that features several
improvements, especially in I/O with less memory required.
Several design modifications to improve speed and memory consumption;
for example, 10% gain in speed and in some 100MB of resident set size (RSS)
saved per event from the devirtualization of the BasicTrajectoryState class
(an ancillary class for track reconstruction); stereo hit class reduced a factor
three in size with RSS memory down to 50MB from 150MB

15

of those are related to track reconstruction classes. For example, the devirtualization of the
BasicTrajectoryState class (an ancillary class for track reconstruction) resulted into a 10%
gain in speed and in some 100MB of resident set size (RSS) saved per event. Similarly the
stereo hit class (the class that stores the double sided module hits) has been considerably
slimmed down (a factor three in size) with a net decrease of RSS memory from 50MB to
150MB, depending on the event occupancy.

Another set of modifications directly a↵ects the outcome on physics output. These are
described in the following.

O✏ine vertexing. The o✏ine reconstruction of primary vertices is based on a deterministic
annealing algorithm to find the z coordinate of the vertices. Major improvements have been
deployed for CMSSW 5.2.x: loops have been autovectorized (thanks to the introduction of
the new compiler) but, to further profit of autovectorization capabilities, the exponential
functions heavily used in the algorithm have been replaced with a fast, autovectorizable
inlined double precision version. Eventually the deterministic annealing algorithm has been
further made more e�cient by optimizing some configuration parameters with essentially
no change in physics performances. The net increase in CPU time amounts to a factor 3
for large PU events.

Cluster shape based seed filtering The large CPU time needed by the track reconstruction
is to be ascribed to the huge number of seeds due to hit combinatorics; in fact a propagation
has to be attempted for each of them. A way to keep this number under control is to
implement filters able to reject fake seeds. One of the most e↵ective is based on the cluster
shape. For example a track impinging a sensor with a large angle will generate a cluster
wider than a track with normal incidence. This can be used to evaluate seed compatibility
with the track hypothesis. Such a filter was used only in steps #0 and #1 in CMSSW 4.4.x
(see table 2); for CMSSW 5.2.x it has been extended also to steps #2, #4 and #5 (see
table 3) with a substantial CPU time benefit. For example, the step #2, particularly prone
to combinatorics since seeds are made up of hit pairs, sees a CPU time reduction of a factor
2.7. Overall the improvement in CPU time is of a factor 1.5. As a side e↵ect of the filter
also the fake rate is reduced by ⇠ 20%.

Iterative tracking. After all the modifications described above, also the iterative tracking
has been further optimized for CMSSW 5.2.x. Nevertheless the di↵erences, summarized
in table 3, are tiny, which demonstrates that upstream improvements are already almost
su�cient to make CMSSW compliant with requirements. There is no need to modify
deeply the iterative tracking, i.e. to reduce combinatorics and to match performance target
by increasing e↵ective PT thresholds and/or by reducing e�ciency for displaced tracks. A
relevant change introduced as part of the optimization consist of the upgrade of the final

Figure 8. Relative CPU time re-
duction to be ascribed to the intro-
duction of gcc 4.6.2 as a function of
the number of PU vertices for simu-
lated QCD events.

Relative change of CPU reconstruction
time vs. PU Simulated QCD events

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Spring 2012 campaign: from CMSSW44x to 52x (2)
Offline vertexing based on a deterministic annealing algorithm improved:
loops autovectorized (new compiler), exponential functions replaced with
fast autovectorizable inlined double precision versions; some configuration
parameters optimized. 3x gain in CPU time with no change in performances
Cluster-shape based seed filtering extended to almost all seeding step. 1.5x
improvement in CPU time. Fake rate is reduced by ∼ 20%.
Iterative tracking Tiny optimization plus upgrade of the final track cleaning
and selection criteria. No efficiency change for prompts tracks with PT>0.9
GeV/c, but fake rate ∼35% down.

16

Table 3. Relevant parameters of the seven tracking iterative steps in CMSSW 5.2.x, after
the second phase of the improvement campaign in 2012; in bold the parameters changed with
respect to the corresponding steps of CMSSW 4.4.x in table 2; see table 1 caption for symbol
definitions.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.02 cm 4.0�
1 triplet pixel 0.2 0.02 cm 4.0�
2 pair pixel 0.6 0.015 cm 0.09 cm
3 triplet pixel 0.3 1.5 cm 2.5�
4 triplet pixel/TIB/TID/TEC 0.5-0.6 1.5 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

track cleaning and selection criteria. Eventually the e�ciency for prompts tracks with PT

larger than 0.9GeV/c is not a↵ected but the fake rate is reduced by about ⇠ 35%.

The overall result obtained with the “spring 2012” campaign improvements implemented in
CMSSW 5.2.x is shown in figure 9 where the dependence of RSS memory as a function of running
time is plotted in CMSSW 4.4.x and CMSSW 5.2.x for a reconstruction job of 100 real data
events from the 2011 special run with high PU. The substantial reduction both in memory load
as well as in total running time is clearly evident.

The CMSSW 5.2.x releases have been fully validated and have been accepted for production
since changes in performaces are minor with respect to physics outcome.

4. A glimpse into the future
The challenge for the CMS reconstruction cannot be considered over with the deployment of
the software for 2012 data taking, currently ongoing. After the first long shutdown, foreseen for
almost two years in 2013 and 2014, LHC will increase center-of-mass energy and instantaneous
luminosity as well. This will require a major reengineering of the entire reconstruction software
and of the tracking.

Figure 9. RSS memory as
a function of running time in
CMSSW 4.4.x and CMSSW 5.2.x
for a reconstruction job of 100 real
data events from the 2011 special
run with high PU.

Iterative tracking in 2012 (CMSSW 52x) / In bold the changes with respect to 44x

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Results of spring 2012 campaign

RSS memory as a function of running time
in CMSSW 44x and CMSSW 52x for a reconstruction job of 100 real

data events from the 2011 special run with high PU.

17

Table 3. Relevant parameters of the seven tracking iterative steps in CMSSW 5.2.x, after
the second phase of the improvement campaign in 2012; in bold the parameters changed with
respect to the corresponding steps of CMSSW 4.4.x in table 2; see table 1 caption for symbol
definitions.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.02 cm 4.0�
1 triplet pixel 0.2 0.02 cm 4.0�
2 pair pixel 0.6 0.015 cm 0.09 cm
3 triplet pixel 0.3 1.5 cm 2.5�
4 triplet pixel/TIB/TID/TEC 0.5-0.6 1.5 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

track cleaning and selection criteria. Eventually the e�ciency for prompts tracks with PT

larger than 0.9GeV/c is not a↵ected but the fake rate is reduced by about ⇠ 35%.

The overall result obtained with the “spring 2012” campaign improvements implemented in
CMSSW 5.2.x is shown in figure 9 where the dependence of RSS memory as a function of running
time is plotted in CMSSW 4.4.x and CMSSW 5.2.x for a reconstruction job of 100 real data
events from the 2011 special run with high PU. The substantial reduction both in memory load
as well as in total running time is clearly evident.

The CMSSW 5.2.x releases have been fully validated and have been accepted for production
since changes in performaces are minor with respect to physics outcome.

4. A glimpse into the future
The challenge for the CMS reconstruction cannot be considered over with the deployment of
the software for 2012 data taking, currently ongoing. After the first long shutdown, foreseen for
almost two years in 2013 and 2014, LHC will increase center-of-mass energy and instantaneous
luminosity as well. This will require a major reengineering of the entire reconstruction software
and of the tracking.

Figure 9. RSS memory as
a function of running time in
CMSSW 4.4.x and CMSSW 5.2.x
for a reconstruction job of 100 real
data events from the 2011 special
run with high PU.

The challenge of 2015

18

28.11.2012 GSguazzoni CMS reconstruction overview and plans

2015: Scary PU scenarios...

19

"  Determined by the performance of the injector chain
"  Different collimator scenarios, not detailed here
"  LHC Injector Upgrade (LIU) fruits after LS2

Potential Performance after LS1

5 Jan Uythoven, LHC status and outlook CMS week, Lisbon, 3 September 2012

Number
of

bunches

β*
[m]

Half
X-

angle
[µrad]

Ib
SPS

Emit
SPS
[um]

Peak Lumi
[cm-2s-1]

~Pile-up Int.
Lumi
[fb-1]

25 ns 2800 0.50 190 1.2e11 2.8 1.1e34 23 ~30

50 ns 1380 0.40 140 1.7e11 2.1 1.8e34
β* level

81
β* level ?

25 ns
low
emit

2600 0.40 150 1.15e11 1.4 2.0e34 48 52

50 ns
low
emit

1200 0.40 120 1.71e11 1.5 2.2e34 113 ?

Presently at 4 TeV, β* = 0.6 m, half X-angle 145 µrad

J. Uythoven
CMS week Lisbon

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Strategies for 2015
= Tracking code reengineering; major redesign of the tracking code to
implement parallelization and vectorization / joint effort between offline
people for the framework (modifications almost transparent for the user)
and tracking developers (for modifications to be implemented straight
into the tracking code)
= Generic improvements as in 2011/2012 (smarter coding, compilers,
seed cleaning) and iterative tracking tuning | tracking developers
= New tracking algorithms (Hough transform) | tracking developers

Several invited talks in the past months on this subject, with
contributions from present and past experiments, also heavy ion.

Developments to be done during LS1 but mainly in 2013, with 2014
devoted to full validation and MC productions

Fishing for new ideas also in this workshop ;-)

20

28.11.2012 GSguazzoni CMS reconstruction overview and plans 21

CERN I EKP14th June 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS2

The Performance Challenge

Since circa 6 years the single

CPU clock frequency has not

increased anymore:

 “The free lunch is over”

The additional transistors are

mainly used to implement:

More CPU Cores

Larger Caches

Larger Vector Units

To be able to take advantage of the available hardware, software needs to:

Use Multi-Process / Multi-Core techniques to fully load the machine's cores

Access the vector units provided by the machine for calculations

Source: Andrzej Nowak – CERN OpenLab

THauth

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Parallelization in CMS...
CMSSW is presently designed to analyze/process events serially and is
organized in modules; CMSSW can be made parallel:
i) at the module level: several tasks are performed in parallel (example:
several track building in parallel within the same iterative step)
ii) at the event level: several modules running in parallel
iii) at the framework level: several events running in parallel

Go parallel for CPU time but for memory also. In this respect running
jobs in parallel is not equivalent to iii).

INTEL TBB chosen as parallelization libraries for the maximum
flexibility.

22

Parallelization at the event level

23

28.11.2012 GSguazzoni CMS reconstruction overview and plans

C.Jones Threaded Framework CHEP 2012

Framework Pieces
Events can be processed in parallel

An Event is filtered by Paths
Paths run in parallel

Paths hold a list of Filters
Filter runs only if previous Filter passes

EndPaths hold OutputModules
EndPaths run in parallel after Paths finish

Producers make data
Run first time their data is requested
Producers run in parallel

Filters, Producers & OutputModules
All are referred to as Modules
Run only after their input data is available

10

A

B

C

F2

D

F1 F3

O

Friday, May 18, 12

Simple event analysis flow...

24

CJones

28.11.2012 GSguazzoni CMS reconstruction overview and plans

...that can be made parallel

First establish dependencies; then run in parallel as many modules is
possible...

25

C.Jones Threaded Framework CHEP 2012

Parallelization

11

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Friday, May 18, 12

CJones

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Simulation

Done by implementing module dependencies and running time for a typical
full reconstruction path (this in an old CMSSW!)

Short periods of high module level parallelism; long periods with only 1 or 2
modules; first period is tracking; second period is photon conversion finding
Parallelizing within those module or running events in parallell would be
beneficial

26
C.Jones Threaded Framework CHEP 2012

Concurrency Limit

Short periods of high module level parallelism

Long periods with only 1 or 2 modules
First period is tracking
Second period is photon conversion finding

Parallelizing within those module would be beneficial
86

0

5

10

15

20

25

30

0 8 16 24 32

Number of Running Modules vs Time for High Pileup RECO
N

um
be

r o
f c

on
cu

rre
nt

ly
 ru

nn
in

g
m

od
ul

es

Average timeline for processing one event (sec)

Tracking Photon conversion finding

Friday, May 18, 12

CJones

Parallelization at the module level

27

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Parallelization within the modules

28

Identify modules that perform tasks where parallelization can be easily
implemented; tracking is a clear candidate, i.e. track building after
seeding (pattern recognition) within an iterative step
Made the algorithms thread safe (could not be trivial in case of tracking)
CAVEAT: going thread safe could result in significant memory
overhead...

#1
#2

#3

#4

...parallel

28.11.2012 GSguazzoni CMS reconstruction overview and plans 29

CERN I EKP14th June 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS16

Triplet Seeding in CMS

Energy deposits of charged particles in the CMS tracker are reconstructed as hits

Before starting the track reconstruction, seeds from three topologically compatible hits in

the tracker are searched: hit-triplets

Starting with two hits which have been already found to be compatible (hit-pair) possible

hits of subsequent tracker layers are evaluated

This seeding procedure amounts to about 14% of the overall runtime of the CMS

Reconstruction

Loop over Hit-Pairs

Loop over Detector Layers

Loop over Layer Hits

Is Compatible ?

Hit-Pairs

Add to Result Triplet Seeds

> Load Hits from this Layer

Yes

THauth

28.11.2012 GSguazzoni CMS reconstruction overview and plans 30

CERN I EKP14th June 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS17

Parallel Part

Triplet Seeding in Parallel
Preserving the ordering of the output collection is essential for subsequent algorithms and

validation purposes

Filling an unsorted output collection with multiple threads at the same time can result in non-

reproducible results

We used a scheme to partition the input collection of hit-pairs in equally sized blocks

A private result list is associated with every block and is merged in the correct order into the

global result list at the end of the algorithm execution. No explicit sorting needed.

The distribution of the blocks to the available threads is handled by TBB

Ordered

Hit-Pairs Hit-Pairs partitioned Block Local Result List Global Result List

Block 1

Block 2

Block 3

Block N

THauth

28.11.2012 GSguazzoni CMS reconstruction overview and plans 31

CERN I EKP14th June 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS21

CMS Reconstruction Runtime and Memory

Each thread adds about 1 MB to the overall memory consumption. Negligible compared to the

memory footprint of the application (~ 1 GB) > lightweight scaling

Higher-than-expected scaling from 1 to 2 cores, probably due to the positive effects of using

the L1/L2 caches of two cores simultaneously

THauth

Parallelization at the event level

32

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Event parallelization: parallel transition management

In a serial event processing let’s call a transition the change of
boundary conditions; change of conditions implies loading into memory
of data (i.e. detector conditions) needed by the event analysis, to be
kept up to next transition or last event.

Transitions in CMS: Begin of Run / End of Run; Begin Lumisection / End
of Lumisection

A lumisection is the smallest time entity with respect to conditions; the
shortest possible IOV (Interval-of-Validity) of a condition record in the
DB is the lumisection; a lumisection corresponds to ~23s

33

28.11.2012 GSguazzoni CMS reconstruction overview and plans 34Threaded Framework Design Offline&Computing Week 11/2012

New Concepts
Global
Sees transitions on a ‘global’ scale

see begin of Run and begin of Lumi when source first reads them
sees end of Run and end of Lumi once all processing has finished for them

Multiple transitions can be running concurrently
two or more begin or end Runs (for different runs)
two or more begin or end Lumis
and end can be occurring while another begin is running

Events are not seen ‘globally’

Stream
Processes transitions serially

begin run, begin lumi, events, end lumi, end run
Multiple streams can be running concurrently each with own events

One stream only sees a subset of the events in a job
Present cmsRun is equivalent to running with only one stream
Paths and EndPaths are a per Stream construct

The same module can be shared across Streams
The Stream knows if a module was run for a particular event

5

CJones

28.11.2012 GSguazzoni CMS reconstruction overview and plans 35Threaded Framework Design Offline&Computing Week 11/2012

Transitions
Minimal dependencies between transitions seen by a module
BeginStreams can’t run until BeginJob finishes
Stream’s BeginRun can’t run until Global’s BeginRun finishes
Global BeginLumi can’t run until Global’s BeginRun finishes
Stream’s BeginLumi can’t run until Global’s BeginLumi finishes
Global EndLumi can’t run until all Streams’ EndLumi’s finish
Global EndRun can’t run until all Streams’ EndRun finish
EndJob can’t run until all EndStreams have finished

NOTE
Global BeginLumi can happen before previous Global EndLumi is called
Same for BeginRun and EndRun
Stream transitions always occur in the ‘expected’ order

6

Begin
Job

Begin
Stream

Begin
Stream

Global

Stream A

Stream B

Begin
Run

Begin
Lumi

Begin
Run

Begin
Run

Begin
Lumi

Begin
Lumi

Event
1

Event
2

Event
3

End
Lumi

Begin
Lumi

Begin
Lumi

Event
4

End
Lumi

End
Lumi

Begin
Lumi

Begin
Lumi

Event
5

End
Lumi

End
Lumi

Begin
Lumi

Event
6

End
Lumi

End
Lumi

End
Run

End
Run

End
Lumi

End
Run

End
Stream

End
Stream

End
Job

CJones

28.11.2012 GSguazzoni CMS reconstruction overview and plans 36Threaded Framework Design Offline&Computing Week 11/2012

Serial Transitions
Case where Global transitions must be serial

Bad when
Large variation in the time it takes to process an event
Very few events in Lumis

Present DQM requires this serialization
DQMStore works as a giant globally shared memory
Same histograms are reused for different Runs and Lumis
Would require framework to enforce a global serialization instead of just a per
module serialization

7

Begin
Job

Begin
Stream

Begin
Stream

Global

Stream A

Stream B

Begin
Run

Begin
Lumi

Begin
Run

Begin
Run

Begin
Lumi

Begin
Lumi

Event
1

Event
2

Event
3

End
Lumi

Begin
Lumi

Begin
Lumi

Event
4

End
Lumi

End
Lumi

Begin
Lumi

Begin
Lumi

Event
5

End
Lumi

End
Lumi

Begin
Lumi

Event
6

End
Lumi

End
Lumi

End
Run

End
Run

End
Lumi

End
Run

End
Stream

End
Stream

End
Job

CJones

Ideas for new tracking algorithms

37

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Bringing new ideas in CMS

38

Manpower is the main limitation in developing “new” ideas in CMS.
Past experience teaches us that it is difficult to bring into production and
maintain several tracking algorithms that need to coexist:

In the past developments for:
= road search
= deterministic annealing filter
= elastic arm

Currently used:
= Combinatorial track finder (kalman filter)
= GSF

Our first thoughts about new algorithms to be imported in CMS is
limited to Hough transform.

24.10.2012 Cerati / Sguazzoni / Stenson

Hough transform in CMS?
Hough transform techniques are widely used in high energy physics
experiments for pattern recognition / track reconstruction

Typical use cases are fast reconstruction in high multiplicity environments

Used in trigger algorithms (Hera-B) and in heavy ion experiments (Phenix,
Alice)

The technique is completely new in CMS

Need to understand if it is worthwhile to endeavour in the project

39

24.10.2012 Cerati / Sguazzoni / Stenson

Hough transform basics
Each hit is compatible to many trajectory hypotheses that can be represented
by curves in an appropriate trajectory parameter space (typically straight
lines); the intersection between many of these curves is a reconstructed track.
So hits are transformed into lines (or curves, more in general) in the track
parameter space by an appropriate conformal transformation, and
accumulation points are identified.

40

ATRACK

BTRACK

histogramming
method to find the
accumulation point

y=Ax+B ⇒ B=-xA+y
for each (X,Y) draw B=-XA
+Y in the (A,B) space

24.10.2012 Cerati / Sguazzoni / Stenson

Current tracking limitations
Iterative tracking is performing well in early steps; early steps are able to
provide fast the bulk of tracking efficiency and, timing wise, they are pretty
stable with respect to PU.

Problems are in later steps designed (loosen cuts) to recover efficiency for
more difficult (e.g. displaced) tracks.

Late steps result in too many fake seeds with respect to early steps; each seed
needs to be propagated in the attempt of building a track. This is time
consuming and time per final good track is not favorable for these later steps.

The long story short: combinatorics...

Track building (e.g. full track reconstruction) is eventually able to get rid of
these fake proto-tracks; similarly, more information should be used to clean
up not useful seeds in advance. But this requires time.

New developments should address this paradox.

41

24.10.2012 Cerati / Sguazzoni / Stenson

Proposal for Hough transform applications in CMS

Hough transform methods cannot handle energy loss and multiple scattering;
they are probably not suitable for full track reconstruction in CMS (where
material effects are substantial).

Nevertheless, Hough transform could represent a natural way to combine
more information than just two/three hits at the seeding level in a fast way
and without entering in the time consuming propagation. Given the reduced
lever arm and the reduced resolution needed, material effects can be
probably neglected at the seeding level.

Proposal for Hough transform method
implementation:
= seeding in the outer tracker layers combining
information from more than three layers;
= 4-layer seeding for the phase-I upgraded pixel
detector.

42

24.10.2012 Cerati / Sguazzoni / Stenson

Conclusions
CMS tracking performances are excellent

CMS tracking has been updated to match the steady increase amount of
luminosity from 2010 to 2012; important lessons learned for the big step
facing us in 2015... the performance gains are the result of several
different improvements deployed at any level: hardware architecture,
framework, analysis code...

A major tracking reengineering effort is being organized; the main target
is bring parallelization at several level of tracking (and reconstruction)
software. Net year will be crucial in this respect.

Meanwhile, innovative (CMS-wise) tracking algorithms should be
developed and evaluated; plan to test Hough transforms for specific
applications.

Any other idea is very welcome; everybody is encouraged to join CMS!

43

