

Status of Reconstruction in CBM

Volker Friese GSI Darmstadt

4th International Workshop for Future Challenges in Tracking and Trigger Concepts 28 November 2012, CERN, Geneva

Reminder: experimental setup

Electron + Hadron setup

Measurement of hadrons (including open charm) and electrons

Core tracker: STS (silicon strip detectors)

Micro-vertex detector for precision measurement of displaced vertices

Reminder: experimental setup

Muon setup

Measurement of muons (low-mass and charmonia) in active absorber system

CBM Project Status

- Approved experiment at FAIR
- Detector design consolidated
- Prototypes of all sub-systems tested in beam
- FAIR construction started
- Installation and commissioning 2017
- First operation 2018

CBM: What's Peculiar

- Heavy-ion collisions at very high interaction rates (up to 10 MHz)
- No hardware trigger
- Free-streaming data; no a-priori event association
- Online reduction of raw data by a factor of up to 1,000
- Fast online reconstruction and analysis is indispensable

Tasks for Online Reconstruction

- Track reconstruction in STS
 - Cellular Automaton
- Track reconstruction in TRD
 - Track following
 - Cellular Automaton
- Ring finding in RICH
 - Hough transform
 - Elastic Net
- Matching RICH ring, TOF hit and ECAL cluster to tracks
 - by proximity
- Analysis of trigger signatures and data selection
 - see presentation by I. Vassiliev (Friday morning)

Track Finding in STS

- CA approach established over years of development
- reconstruction time on ms level
- see presentations by I. Kulakov and V. Akishina (tomorrow afternoon)

Tracking in the muon detector

- "Active absorber" system: absorbers are interlayed with 6x3 detector layers
- Tracks from STS are used as seeds
- Track following with Kalman Filter
- Propagation with 4th order Runge-Kutta
- Hit association: nearest neighbour / branching / weighting

Tracking in the TRD

10 - 12 identical layers

Track finding similar to tracking in the muon detector (track following + Kalman Filter)

Reconstruction of RICH rings

Hough

(x0-Dmax,y0+Dmax)

UrQMD, central Au+Au @ 25 AGeV + 5 e⁺ + 5 e⁻

(x0+Dmax,y0+Dmax)

Ring finding by localised Hough Transform (preselection of hits)

- ➢ Ellipse ring fitter
- \triangleright Rejection of fake rings by quality criteria (ANN)
 - \triangleright number of hits on ring, χ^2 , largest angle
 - \succ half axes, rotation angle
- Efficiency 92 %, fake rings 3.5 / event

Status CBM Online Reconstruction

- All algorithms optimised w.r.t speed and parallelised
- Not many changes since last workshop in February 2012

Open issues:

- Reconstruction starts with space points. How to arrive there from raw data?
- Implementation on which hardware?
 - CPU / GPU?
 - GPU: ATI / NVIDIA?
 - language: OpenCL / CUDA?
- Implementation of fast software triggers?

Trigger Signatures

- Signatures vary qualitatively:
 - local and simple: $J/\psi \rightarrow \mu^+\mu^-$
 - non-local and simple: $J/\psi \rightarrow e^+e^-$
 - non-local and complex: D,Ω->charged hadrons
- For maximal interaction rate, reconstruction in STS is always required (momentum information), but not necessarily of all tracks in STS
- Trigger architecture must enable
 - variety of trigger patterns (J/ ψ : 1% of data, D mesons: 50% of data)
 - multiple triggers at a time
 - multiple trigger steps with subsequent data reduction

Trigger in the Muon System

Signature: Two main-vertex tracks after the last absorber

MUCH Trigger Implementation in CUDA

BSF:- Total Input Events / No of Background event survived after Threshold		
Threshold	Events Survived (1000 Events)	BSF
A	431	2.32
В	120	8.33
С	100	10
D	41	24.39

- Fit triplet by straight line and extrapolate backwards to target
- Implemented in CUDA and tested on NVIDIA Tesla

Towards Online Data Processing

Online Data Flow

- FPGA (DPB, FLIB): Data aggregation, pre-processing (e.g., cluster finding), time slice building
- CPU/GPU (FLES): (Partial) event reconstruction, data selection

Data Formats

Some Way Yet To Go

- Data processing on a FLES computing node is only one part of a complex online system
- The input to a computing node will be a "timeslice" data container, with the raw data of all detectors within a given time interval
- Track reconstruction is only one part of the problem:
 - data preparation (creation of space points from raw data)
 - event association

Enough of work for the years to come!