
LHCb ideas and path toward
vectorization and parallelization

Niko Neufeld
CERN, Wednesday, Nov 28th 2012

Fourth International Workshop for Future Challenges in
Tracking and Trigger Concepts

Disclaimer & Acknowledgements

• This talk contains very few technical results

– Short notice, LHCb week  and … most work in
LHCb is simply at a very early stage today

• Material presented comes of of many
discussions with my colleagues in and outside
LHCb, both from the online and offline world

• Very few of what is presented is LHCb specific

LHCb ideas and path to vectorization and parallelisation

From the Intro to the LHCb
Manycores workshop April 2012

• How well can many-cores solve important LHCb problems
(many small events, secondary vertices, tracking, particle-ID)

• How do we evaluate the overall (cost-)effectiveness of these
technologies?

• How can we make a code-base working with and without
these (albeit at different performance) so that things can be
run also “off-line” on other sites
– Not all Grid sites will have “our” chosen coprocessor-cards

• How will these codes be maintained?
• Can we develop frameworks allowing non-expert developers

to contribute  you think Boost and STL are tricky to
master? Have a look at a decent technical book on CUDA

LHCb ideas and path to vectorization and parallelisation

Two approaches for better CPU use

1. “Evolutionary”: better use of modern
processor-resources within existing
frameworks

– Make classical event-parallel processing more
efficient: late fork-ing, x32, …

– Try to make key, well isolated, pieces of code
thread-safe

2. “Revolutionary”: re-think everything
– New frame-works for many-core architectures:

GPU, MIC, etc…

LHCb ideas and path to vectorization and parallelisation

LHCb specialties

• Main specialty are the small events (60 kB
today, ~ 100 kB after the upgrade) with little
pileup (today about 1.5 to 2, later up to 4) and
consequently relatively short processing time
(about 30 ms for the sequential trigger code)

•  it seems that more can be gained by
processing many events in parallel rather than
individual events in a parallel fashion

LHCb ideas and path to vectorization and parallelisation

Reducing memory footprint

• Many efforts under way...

• Analysis of the ROOT Persistence I/O Memory
Footprint

• Working on GaudiMP (c.f. talk on Friday
morning)

• Kernel Same page Merging (KSM)
"Reducing the Memory Footprint of Parallel
Applications with KSM”

• “X32” ABI i.e. 32 bits pointers in 64 bit linux

LHCb ideas and path to vectorization and parallelisation

Targeted paralellisation:
Histogram filling

• Solutions b (pthread mutex)
and c (TBB concurrent
queue) have been
implemented in a prototype
of the histogram service
– Choice between old

functionality and b) or c) via
job options

– Tested with histogram test
option file from Gaudi
Examples

• The test delivers also some
sort of performance
summary

LHCb ideas and path to vectorization and parallelisation

Results from B. Jost

SIMD / vectorization

• Not much explicitly done right now, but we
understand that this will be very important

• So far only tried with auto-vectorization (gcc
4.6)  no gain

• Lack of vectorization felt most painfully on
Xeon/Phi and GPUs

LHCb ideas and path to vectorization and parallelisation

Two time-scales

• LHCb software today and through LS1 and LS2
– CPU evolution is not standing still

– But need to support a large software base for a large
user community (ongoing analyses)  can only apply
“transparent” improvements

• LHCb software for the upgraded experiment after
LS2 (major upgrade)
– Need to try to anticipate what will be “the” way to go

from 2018: GPUs? Xeon/Phi? Something else?

– Everything is on the table

LHCb ideas and path to vectorization and parallelisation

 GBT: custom radiation- hard
link over MMF, 3.2 Gbit/s
(about 10000)

 Input into DAQ network
(10/40 Gigabit Ethernet or
FDR IB) (1000 to 4000)

 Output from DAQ network
into compute unit clusters
(100 Gbit Ethernet / EDR IB)
(200 to 400 links)

The dataflow for the upgraded
DAQ

LHCb ideas and path to vectorization and parallelisation

Detector

DAQ network

100 m rock

Readout Units

Compute Units

Two worlds

• Online:
– Trigger system for the LHCb upgrade (next slide)
– Full control over hardware (servers, interconnect)
– Limited essentially only by power, cooling, money and – most

importantly – imagination and creativity
– Continuous support by comparatively small & close-knit teams

of system and development experts

• Offline:
– Need to work with what is “there” – only one of many clients to

Grid/Cloud resources
– Need to provide software which runs the same way on large

batch-farms and on the laptop of individual researchers
– Works with a large, “anonymous” or at least remote, user-base

LHCb ideas and path to vectorization and parallelisation

Online Pixel reconstruction using
TBB

LHCb ideas and path to vectorization and parallelisation

Results from D. Campora

The compute unit

• Receives event-fragments and assembles
complete events (actually multiple events
simultaneously)
– No separate event-builder PC forseen

• Runs the selection algorithm
• Using some rough back-of-the-envelope

estimates and Moore’s law about 1600 servers
(dual-socket) of the 2017 will be needed for the
baseline upgrade event-filter (10 MHz)

• Each server needs to absorb about 8-9 Gigabit
(1GB) of data per second (depends on event-size)

 LHCb ideas and path to vectorization and parallelisation

Challenges on the compute unit

• The CU must absorb 8 Gbit/s

• Feeding all data through a co-processor card
will at least double the through-put to the
system bus

– Unless “snooping” is used and part of the
processing can only be done on co-processor card,
this will be tricky at these rates

LHCb ideas and path to vectorization and parallelisation

The server of 2017

• It will be based on PCIe Gen 3 as the I/O system
• Current generation of Intel CPU (and the next two on

the road-map) offer 40 PCIe Gen 3 lanes per socket 
theoretical I/O of 320 Gbit/s
– Need to verify what this means in practice but should get

close to 90%  partially done on SandyBridge using GPUs
and InfiniBand cards

– Data can be DMA-ed directly to processor cache (by-
passing slow main-memory)

• Optimal use of off-load engines and data distribution
requires some control over the data-flow (not good for
blind push)

LHCb ideas and path to vectorization and parallelisation

LHCb “strategy”

In a few preliminary discussions we have very
quickly settled on the following “musts”
• Any physics algorithm must be able to run on any

offline / online available hardware producing the
exactly same results (crucial for systematics etc…)

• We do not want a vendor / technology lock-in
(for competitive prices online but also because
we can not (strongly) influence what is offered on
the Grid)

• We need a data-processing framework, which
can process many events in parallel

LHCb ideas and path to vectorization and parallelisation

