SIMDized cluster transformation for ALICE HLT

Sergey Gorbunov

ALICE HLT: Reconstruction in TPC tracker

TPC cluster transformation: (Pad, Time)->(X,Y,Z)

ALICE HLT: New composed transformation

Composed TPC transformation:

- 1. TPCExBShape
- 2. alignGlobal
- 3. alignLocal
- 4. alignQuadrant
- 5. FCVoltError3D
- 6. FitBoundary
- 7. FitExBTwist
- 8. FitAlignTPC
- 9. FitRocAlignZSum
- ... there will be more

Speed: 7.9 ms/cluster = 6 s/event (PbPb)

Too many different transformations — no hope to optimize the code ...

30 November 2012, CERN Sergey Gorbunov, FIAS 4/13

Final transformation: It does not look that complicated:

Sec=0, Row=0, pad coordinate in [30,31]

Idea: Fit the original Transformation with polynoms/splines:

Initialization phase: Create temporary splines by calling TPCTransform():

- no matter which corrections are applied,
- no matter how slow it is

Running phase: Use of the splines:

- few arithmetic operators --- very fast
- transformation time is constant: no more dependence on other code and data base objects

Idea: Fit the original Transformation with polynoms/splines:

Requirements:

Accuracy: 100 um

- Speed: 10 times faster

- Transformation for 33 rows should fit to CPU cache
- Use of SIMD vectors (Vc package) for faster calculations

Fit with polynoms: Many local features- does not work well:

Difference with polynom of 0 order [cm]:

Difference with 5-th order polynom [cm]:

30 November 2012, CERN Sergey Gorbunov, FIAS 8/13

Fit with splines: Accuracy about 0.1 um for X,Y,Z

Worst deviation in X: 88um, in Y: 81um, in Z: 3.8um

30 November 2012, CERN Sergey Gorbunov, FIAS 9/13

Fast HLT transformation: TPC row with the worst deviations

(Orig. - Fast transformation)[um] vs Pad and Time

30 November 2012, CERN Sergey Gorbunov, FIAS 10/13

Fast HLT transformation: TPC row with the worst deviations

This particular TPC row seems to be miscalibrated to 140um -> accuracy of the Fast Transformation [80um] here is not worse than the accuracy of the original transformation [140um].

ALICE HLT: Parallel algorithm (Cellular Automaton)

Fast HLT Transformation: Results

- Accuracy: 0.1 um
- Speed-up in scalar: 58.1 times
- Speed-up with SIMD vectors: 83.6 times
 (SIMD give factor 1.44 extra speed-up)
- Transformation size for 33 rows: 170kB (full TPC: 29MB)

Use of SIMD vectors:

- Vc package from M.Kretz very useful tool
- Spline points are stored as 4-vectors: (x,y,z,*)
 - This scheme allows one to avoid packing of data to vectors, but it only works with SIMD vectors of size 4.

Parallelization in ALICE HLT:

- All time-consuming HLT components are running now on parallel hardware:
 - cluster finder: FPGA
 - cluster transformation: SIMD (via Vc package)
 - sector tracker: GPU
- Fast transformation gives factor of 83.6 times speed-up
- Vc package installed and can be used offline as well

