

Detector challenges at CLIC contrasted with the LHC case

CERN detector seminar – 12 Oct. 2012 Erik van der Kraaij (CERN) on behalf of CLIC physics & detectors study

Resources

CLIC physics & detector Conceptual Design Report

• Carried out within a broad international effort

Have compared with ATLAS & CMS – at nominal 14 TeV. Info from:

- Froidevaux and Sphicas, Rev. Nucl. Part. Sci. 2006: General purpose detectors for the large hadron collider
- 2008 JINST 3 S08003: The ATLAS Experiment at the CERN Large Hadron Collider
- 2008 JINST 3 S08004: The CMS experiment at the CERN LHC
- TDRs

Thanks to:

• Angela, Benoit, Christian, ... & Pippa Wells!

- CLIC Compact Linear e⁺e⁻ Collider physics goals
- CLIC accelerator
 - Experimental conditions
- Detector designs and examples of R&D efforts
- Reconstruction strategy with Particle Flow Analysis

$\overline{\mathbb{X}}$ CLIC e⁺e⁻ physics

Precision measurements of SM and new particles:

- Higgs, NP, ...
- Discrimination between competing models

As a lepton collider, discover new physics in Electro-Weak states at TeV scale not accessible by LHC.

e^+e^- collisions up to $\sqrt{s} = 3$ TeV

• Built in stages, lower energies can be studied first.

Accelerating gradient: 100 MV/m

Two Beam Scheme:

Drive Beam supplies RF power

- low energy (2.4 GeV 240 MeV)
- high current (100A)

Main beam for physics

- high energy (9 GeV 1.5 TeV)
- current 1.2 A

Possible staged construction

- Lower energy machine can operate during construction of next stage.
- Choice for energy stages has to be motived by physics input (LHC).

Beam structure

	CLIC 3 TeV	LHC 14 TeV (nominal)
Bunch crossing separation [ns]	0.5	25
Crossing angle	20 mrad	200 µrad
Instantaneous luminosity [cm ⁻² s ⁻¹]	6×10 ³⁴	1×10^{34}

Low duty cycle at CLIC:

- 312 BXs per train; all BXs read out in-between bunch trains. No trigger.
- All subdetectors will implement power pulsing schemes at 50 Hz, to reduce needed cooling systems

Beam-induced backgrounds at 3 TeV

Main backgrounds in detector:

- incoherent e⁺e⁻ pairs: 19k particles / train
- $\gamma\gamma \rightarrow$ hadrons: 17k particles / train

Need to:

- Include overlapping beam-induced background in simulation
- Reject **pile-up** in offline reconstruction.

30% in "1% highest energy"

- \checkmark \sqrt{s} is not known per event
- Much like the Initial State Radiation, need to fold in luminosity spectrum in reconstruction

Pile up at interaction point

	CLIC 3 TeV	LHC 14 TeV (ATLAS)
ID size in w/w/z direction	45 nm / 1 nm /	15 µm / 15 µm /
IF Size III x / y / z direction	40 µm	~5 cm

Pile up of:

- LHC: 23 minimum bias over triggered event, each 25 ns.
 - Interaction Points smeared over 5 cm.
- CLIC with 312 BXs / train:
 - Overlapping beam-induced background, *all* at one interaction point.
- At CLIC the IP-spot can be used as constraint in track-reconstruction, at LHC it cannot.

CLIC frequency of interesting events $< \sim 1/train$.

- In high occupancy regions, need multi-hit storage/readout With accurate time stamping
- Electronics do not need trigger
- Offline background suppression

	CLIC 3 TeV	LHC 14 TeV (ATLAS)
Trigger [# selected events : # total events]	1:1	$200:10^9$
Total data rate after trigger [GBytes/sec]	200	0.3

LHC:

• Major challenge in the (multiple levels of) trigger

CLIC Detector Requirements

- momentum resolution for high energy lepton final states

p = 100 GeV: $\sigma(p_T) / p_T = 0.2\%$ (CMS: 1.5%) σ_{pT} / p_T^2

$$\sigma_{pT} / p_T^2 \sim 2.10^{-5} \,\text{GeV}^{-1}$$

 Need very good jet-energy resolution to distinguish W / Z dijet decays (to be reached with PFA)

$$E = 10^{2} - 10^{3} \text{ GeV}:$$

$$\sigma(E_{j})/E_{j} \sim 5.0\% - 3.5\%$$

ATLAS ~ 8.0% - 4.0%

Reconstruct each particle inside a jet by:

- Measuring charged particle energies (60% of jet) in tracker.
- Measuring photon energies (30%) in ECAL

 $\sigma E/E < 20\%/\sqrt{E(GeV)}$

• Measuring only neutral hadron energies (10%) in HCAL $\sigma E/E > 50\%/\sqrt{E(GeV)}$

 Need calorimeters with very high granularity and pattern recognition
 → Imaging calorimeters

- CLIC Compact Linear e⁺e⁻ Collider physics goals
 - Precision measurements of new particles
 - Discovery of new physics at TeV scale
- CLIC accelerator
 - Experimental conditions
- Detector designs and examples of R&D efforts
- Reconstruction strategy with Particle Flow Analysis

Two general purpose CLIC detector concepts

- Difference in tracking systems
- Both have Tungsten in the barrel HCAL, to have a highest possible density and keep the coil radius limited.

• Including instrumentation and final focusing quadrupole.

Overall sizes

For CLIC the design resembles CMS

Calorimeters to be placed inside the solenoid for accurate PFA analysis

CLIC detectors are much shorter than CMS

	CLIC_ILD	CLIC_SiD	CMS	ATLAS
Full detector height & length [m]	H: 14 L: 14	H: 14 L: 14	H: 15 L: 20	H: 22 L: 46
Magnetic field [T]	4	5	3.8	2.0 (solenoid) 0.5 – 1.0 (toroid)
Solenoid inner radius + thickness [m]	3.4 + 0.7	2.7 + 0.8	3.0 + 0.6	1.2 + 0.2

Overall sizes

For CLIC the design resembles CMS

Calorimeters to be placed inside the solenoid for accurate PFA analysis

CLIC detectors are much shorter than CMS

	CLIC_ILD	CLIC_SiD	CMS	ATLAS
Full detector height & length [m]	H: 14 L: 14	H: 14 L: 14	H: 15 L: 20	H: 22 L: 46
Magnetic field [T]	4	5	3.8	2.0 (solenoid) 0.5 – 1.0 (toroid)
Solenoid inner radius + thickness [m]	3.4 + 0.7	2.7 + 0.8	3.0 + 0.6	1.2 + 0.2
Yoke inner radius + thickness [m]	4.5 + 2.7	3.8 + 2.9	4 + 3	HCAL: 2.3 + 1.6
Yoke mass – Detector mass [10 ³ tons]	10 – 12	11 – 12.5	10 – 12.5	4 - 7

CLIC A	TLAS CMS
σ _{rφ} [μm]	
$\mathbf{p}_{\mathrm{T}} = 1 \mathbf{GeV} $ ~20	75 90
$\mathbf{p}_{\mathrm{T}} = 1 \mathrm{TeV} \qquad 5$	11 9

R&D aims at

- Low material budget: $X \leq 0.2\% X_0$ / layer
 - Corresponds to ~200 μ m Si, including supports, cables, cooling
- Low-power ASICs (~50 mW/cm²) + air-flow cooling
- Maintaining high granularity and precise time stamping (~10 ns)

	CLIC_SiD	CMS
Material X/X ₀ (90°)	~1.1% (5 layer)	~10% (3 layer)
Power/pixel	$<\sim 0.2 \ \mu W$	28 µ W
Pixel size	$20 \ge 20 \ \mu \ m^2$	$100 \ge 150 \ \mu \ m^2$
# pixels	2.76 G	66 M
Time stamping	5-10 ns	<~25 ns

- Low power is achieved by power pulsing ($P_{avg} \sim 1/50 \times P_{cont.}$) To date: no technology option available fulfilling all requirements

Beam induced background constraints

	CLIC	ATLAS
Occupancy in 1 st vertex det. barrel layer [# particles / mm ²]	1.9 / train	0.05 / BX
Maximum pixel occupancy	2% / train	~0.1% / BX
NIEL in innermost layer [n _{eq} cm ⁻² y ⁻¹]	< 10 ¹¹	$10^{14} - 10^{15}$
Total ionizing dose [Gy/yr]	200	$> \sim 10^5$

➢ For LHC a major issue is radiation hardness; minor concern at CLIC.

cic

CLICPix 65 nm demonstrator chip

- Demonstrator chip designed with fully functional 64 by 64 pixel matrix
- Submission November 2012 in Multi-Project Wafer run
- 65 nm CMOS
- Small pixel pitch (25 μm)
- Simultaneous 4-bit TOA and TOT per pixel
 - Front-end time slicing < 10 ns
- Selectable zero suppression:
 - pixel-, cluster- or column-based.
- $P_{analog} \sim 2 \text{ W/cm}^2 \text{ (peak)}$ - power pulsing $\rightarrow P_{avg} < 50 \text{ mW/cm}^2$

CLICPix power pulsing scheme

- Estimation of CLICPix power consumption based on measurements with 65 nm test-chip & from current TimePix
- Power pulsing with On/Idle/Off states
 - Very small duty cycle for analog power

\bigcirc Low-mass air flow cooling (P ~ 500W in VTX)

ANSYS finite element simulation

• Spiral disk geometry for air flow into barrel

F. Duarte Ramos

\bigcirc Low-mass air flow cooling (P ~ 500W in VTX)

ANSYS finite element simulation

- Spiral disk geometry for air flow into barrel
- Sufficient heat removal
- Temperature gradient between two endcaps of ~15°C

Erik van der Kraaij, CERN LCD

Track momentum resolutions

- CMS tracker, with high point resolution, is very accurate in strong magnetic field
- Large ATLAS air-core muon spectrometer results in better momentum reconstruction in the forward region.
- CLIC muon system is not used for momentum measurement.

		CLIC_ILD	ATLAS	CMS
Inner Detector (at 90°)	p = 100 GeV	0.2%	3.8%	1.5%
Incl. muon sys. (at 90°)	p = 1 TeV	2%	10.4%	4.5%
Incl. muon sys. (~ θ = 15°)	p = 1 TeV	10%	4.4%	7.0%
η ~ 2				

Erik van der Kraaij, CERN LCD

Need fine transverse and longitudinal segmentation

ECAL	$CLIC_ILD, B = 4 T$
Absorber/Active element	Tungsten / Si pads
Sampling layers	20x 2.1 mm, 10x 4.2 mm
Cell size	$5.1 \times 5.1 \text{ mm}^2$
X_0 and $\lambda_{ m I}$	24 and 1

EM Calorimeter (barrel, at 90°)

	CLIC 3 TeV	ATLAS	CMS
Technology	Tungsten / Si pads	Lead / LAr	Lead tungstate crystals
#longitud. readout segments	30	4	1
Readout segment size [cm³] (longitudinal × 'tilesize')	0.3 x 0.5 x 0.5 For first 19 layers	47 x 4 x 4 (main layer)	23 x 2.2 x 2.2
Depth (radiation length) $[X_0]$	24	22	26

Note:

- ECAL # channels at ATLAS: 0.2 M at CLIC: 100 M
- Silicon surface in CMS tracker is CLIC_ILD ECAL has CLIC_SiD ECAL has

200 m² 2600 m². 1100 m².

Based on stand-alone test-beam measurements:

	CLIC 3 TeV	ATLAS	CMS
Intrinsic energy resolution	a = 17%	a = 10%	a = 3%
$\sigma_E / E = a / \sqrt{E} \oplus b$	b = 1%	b = 0.2%	b = 0.5%

The resolution of the CLIC ECAL is worse than at LHC.

- Intrinsic resolution less important for jets.
 → Want to 'track' the particles inside shower for optimal jet resolution.
- Granularity is more important to distinguish depositions by different particles
 → Electron energies come from the tracking.
 - \rightarrow Only photons are measured with CLIC ECAL resolution.

HCAL	CLIC_ILD & CLIC_SiD	
Absorber (Barrel/F)	Tungsten / Steel	
Sampling layers (B/F)	75x10 mm / 60x 20 mm	$\leftarrow 0.1 \lambda_{\rm I}$
Cell size	30 × 30 mm ² (analog, Scint.)	$\leftarrow 10 \times 10 \text{ mm}^2$ (digital, e.g. RPC)
λ_{I}	7.5	

	CLIC 3 TeV	ATLAS	CMS
Technology	Tungsten / scint.	Iron / scint.	Brass / scint.
#longitud. readout segments	75	3	1
Readout segment size [cm ³] (longitudinal × 'tilesize')	1.7 x 3.0 x 3.0	~ 20 x 20 x 20 For the first layer	96 x 20 x 20
Interaction length $[\lambda_I]$	7.5 (+1 for ECAL)	~7.5	~5.5 (+3 for coil & tailcatcher)

- Where ATLAS has 20k channels, CLIC_ILD has 10M channels.
- CLIC & CMS coil sizes are similar, yet HCAL depth at CLIC is higher, due to the different absorber materials used
- LHC calorimeters are φ - η segmented, for CLIC it will be one-size tiles.

Based on stand-alone test-beam measurements:

		CLIC 3 TeV	ATLAS	CMS
Intrinsic ener	gy resolution	a = ~60%	a = 45%	a = 100%
$\sigma_{\rm E} / {\rm E} = {\rm a} / \sqrt{{\rm E}}$	⊕ b	b = ~2.5%	b = 1.3%	b = 7%
Jet energy	p = 45 GeV	5%	$15\% \ 4\%$	19%, PFA → 12%
σ _E / E	p = 0.5 TeV	3.5%		5%

ATLAS has higher segmentation and more λ_I than CMS. The nominal resolutions are therefore better.

• CMS results with PFA are preliminary.

Tungsten HCAL prototypes

Analog HCAL: 2010/11 at PS/SPS

- Scintillator tiles 3x3 cm² (in centre)
- Read out by SiPM

Main purpose: Validation of Geant4 simulation of hadronic shower development in tungsten

Digital HCAL: 2012 at PS/SPS

- Gaseous glass RPCs
- With 1x1 cm² readout pads

Two prototypes in W-HCAL test beam so far. Alternatives are: MicroMegas, GEMs, ...

Maging calorimetry – analog HCAL

clo

10 GeV pion:

QGSP_BERT_HP is found to give very good agreement for both pions and protons

Imaging calorimetry – digital HCAL

Digital HCAL at SPS:

210 GeV pion event display •

channels **ATLAS** 20k **DHCAL** in testbeam 450k

- CLIC physics goals
 - Precision measurements of new particles
 - Discovery of new physics at TeV scale
- CLIC Compact Linear e⁺e⁻ Collider
 - Experimental conditions
- Detector designs and examples of R&D efforts
- Reconstruction strategy with Particle Flow Analysis
 - Filter interesting events out of beam induced background
 - Obtain required jet energy resolution

Time development in hadronic showers

- In steel 90% of the energy is recorded within 6 ns (corrected for time-of-flight).
- In tungsten this takes almost ~100 ns.
 - Response is slower due to the much larger component of the energy in slow neutrons.
- Need to integrate over ~100 ns in reconstruction, keeping out pile-up hits...

Assume can identify t_0 of physics event in offline event filter

- define "reconstruction" window around t₀
- All hits and tracks in window are passed to reconstruction.

Currently in the CLIC PFA:

Subdetector	Reco Window	Hit Resolution
ECAL	10 ns	1 ns
HCAL Endcap	10 ns	1 ns
HCAL Barrel	100 ns	1 ns
Silicon Detectors	10 ns	10/√12 ns
TPC (CLIC_ILD)	Entire train	n/a

Achievable in the calorimeters with a sampling each ~25 ns

Assume can identify t_0 of physics event in offline event filter

- define "reconstruction" window around t₀
- All hits and tracks in window are passed to reconstruction.

- Calculate energy weighted mean time of each cluster
 - Obtain sub-ns resolution
 - Use to reject out-of-time clusters and associated tracks

Impact of filters

8 jet final state, $\sqrt{s} = 3$ TeV, $e^+e^- \rightarrow H^+H^- \rightarrow tbbt + 60$ BX $\gamma\gamma \rightarrow hadrons$

Excellent performance:➤ Reject 93 % of background energy and < 1% of physics event

Barrel region $|\cos \theta| < 0.7$. PFA, without background:

CLIC: At higher energies, particle separation becomes more difficult:

• Confusion term dominates energy resolution, particle flow can become energy flow.

cic

Test: measure masses & crosssections with 4 years of running (2 ab⁻¹)

Full Simulation with background

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} W^{+} W^{-}$$

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0} \rightarrow hh \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \qquad 82 \%$$

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0} \rightarrow Zh \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \qquad 17 \%$$

> Resolution of 1 - 3% obtained.

Summary & conclusion

- CLIC physics requirements and accelerator environment pose challenging conditions
 - Require detectors with high granularity in space and time
- Showed current conceptual design of some sub-detectors
- Showed examples of ongoing R&D
 - Funded, among others, by the EU FP7 AIDA project stimulating infrastructures for detector development
- CLIC Conceptual Design Report is published:
 - Detector & Physics CDR
 <u>http://arxiv.org/abs/1202.5940</u>
 <u>Strategic summary</u>
 <u>http://arxiv.org/abs/1209.2543</u>
 - Accelerator CDR CERN-2012-007

https://edms.cern.ch/document/1234244

• With CDR proven that we can achieve the required high precision physics with CLIC.

