The p+A Program and Future Studies of Gluon Saturation at RHIC

John Lajoie

Iowa State University

10/25/2012

Gluon Saturation

Gluons in Nuclei

Large uncertainties in the nuclear gluon PDF at low-x: many important effects to disentangle – *shadowing, antishadowing, nonlinear QCD, saturation,* etc.

Important for fundamental understand of partonic processes in nuclei, *as well as* for the initial conditions at RHIC and the LHC.

The Big Questions

- What is the gluon density in heavy nuclei in the RHIC kinematic range?
- What role does saturation play in determining this gluon density?
- What is the saturation scale Q_s, and how does it depend on A and x?

What do we know from d+Au?

Why p+A instead of d+A?

high-x are large for the deuteron, which may necessitate d+p running for proper comparison.

...and you can't polarize the deuteron at RHIC...

NSAC Town Meeting - DNP Fall 2012

0.1

0

10/25/2012

MIM PDF uncertainty

0.4

0.6

Х

0.8

1

0.2

RHIC can do p+A!

New CAD study: C-A/AP/#447

p+A made easier by stochastic cooling!

Issue is aperture of the DX magnets at IP6,8 (beams in collision).

Allowing proper clearance for Au beam $(3\sigma + 2mm)$ requires DX magnets at IP6,8 be moved by ~**1cm**.

10/25/2012

NSAC Town Meeting - DNP Fall 2012

The PHENIX MPC-EX Detector

10/25/2012

NSAC Town Meeting - DNP Fall 2012

EPS09 Limits from Prompt Photons

Prompt photons in MPC-EX -> Precise Measurement of Gluons at Low-x

10/25/2012

NSAC Town Meeting - DNP Fall 2012

STAR Near-Term Efforts

10/25/2012

Polarized p+A Collisions

TMD Gluon Distributions

STAR/PHENIX Forward Upgrades

Future Saturation Measurements

• Forward-forward correlations:

- h-h and π^0 - π^0 are straightforward experimentally
- γ -h and γ - π^0 are easier to interpret
- jet-jet, γ -jet gives access to complete kinematics at LO
- J/ Ψ Production at forward rapidity:
 - Complimentary measurement (gg fusion)

- Drell-Yan:
 - Complete kinematics: x_1 , x_2 , Q^2
 - True 2->1 process yields access to x<0.001
 - Requires high luminosity (end of decade)

Why RHIC?

- RHIC "straddles" Q_{sA}
 - RHIC can make measurements both above and below the saturation scale (rapidity and centrality)
- RHIC can explore the dependence of the saturation scale on nuclear size
 - Flexibility of RHIC collider to run p+A with multiple A species
- Polarized p+A collisions offer a unique, fundamentally new observable
- Measurements at RHIC and the LHC and complementary!

Summary

- The study of gluon saturation offers a window into the structure of matter:
 - Important to understand partonic processes on nuclei
 - Sets the initial conditions for HI collisions
 - Tantalizing hints in current RHIC data!
- Near-term detector upgrades will continue the success and open new approaches:
 - Prompt photons in the PHENIX MPC-EX
 - Jet correlations with STAR FMS+FHC
 - Polarized p+A collisions a unique opportunity
- PHENIX/STAR forward upgrades will enable critical new observables

Outline

- Gluon Saturation
 - Why is it interesting?

What do we know from d+Au?

- Sampling of results from PHENIX and STAR (and BRAHMS)
- Why p+A instead of d+A?
- Near Term Efforts
 - PHENIX MPC-EX
 - STAR (FMS and FHC)
 - Polarized p+A: a unique capability

• The PHENIX and STAR Forward Upgrades

- Physics opportunities with upgrades
- Summary

Recent Results from the LHC

Prompt Photon Predictions

10/25/2012

PHENIX Forward Upgrade

Optimized for jets, photons and DY over a large range in rapidity (1.2< η <4)

r

STAR Forward Upgrade

PDF's

