Exploring the QCD Phase Diagram: RHIC Beam Energy Scan II

Daniel Cebra University of California, Davis

Daniel Cebra 10/26/2012 APS DNP Meeting – Town Meeting Newport Beach, CA

Slide 1 of 18

The RHIC Beam Energy Scan I

• We built RHIC to find the QGP. And we did it!

• But QGP is a new and complicated phase of matter. We have made huge progress in understanding its nature. At high energy, we expect a **cross-over** transition. At lower energy there should be a **first order** transition and a **critical point**.

 The structure of the QCD matter phase diagram is
 fundamental. This will be in textbooks in future decades

• Three Goals:

- Turn-off of QGP signatures
- Critical Point
- First order phase transition.

Daniel Cebra 10/26/2012

Overview of the Beam Energy Scan I Results

- 1. **Turn-off of QGP signatures:**
 - NCQ breaks down below 19.6 GeV
 - High p_t suppression not seen below 19.6 Gev
 - LPV effect not seen below 11.5 GeV

2. Evidence of the first order phase transition.

- *v₁* sign change above 7.7
- Inflection in v_2 and $dE_T/d\eta$ at 7.7
- Azimuthal HBT signal inconclusive

3. Search for the critical point.

- K/ π , K/p, or p/ π fluctuations are not conclusive.
- Higher moments of the proton distributions

Hints

Strong

Hints

Turn-off of QGP Signatures

Newport Beach, CA

Slide 4 of 18

Search for 1st Order PhaseTransition

Excitation function for freeze-out eccentricity, ϵ_{r}

Search for the Critical Point

What Have We Learned? What Needs to be Done?

1) The key QGP signatures disappear, no need to search above 19.6

- 2) First order phase transition or Onset of deconfinement *likely* at the lower end of the range
 - low energy performance is critical
- 3) Critical Point will need more statistics
 - Do we need finer steps? Over 100 MeV Gap in μ_B between 11.5 and 19.8
- 4) Determination of the temperature dependence of transport properties

Beam Energy Scan II: Answering the remaining questions

	√S _{NN} (GeV)	19.6	15	11.5	7.7	
	μ_{B} (GeV)	205	250	315	420	
	BES I (MEvts)	36		11.7	4.3	
	BES II (MEvts)	400	100	120	80	
• Fi	ner steps in μ_{B})			
 High Statistics 		Critical Point		Ons Deconf	Onset of Deconfinement	

But that's a lot of data... at current rates, this would take ~70 weeks of RHIC operations! Isn't there a better way? → Yes! We can cool the beams!

Daniel Cebra	
10/26/2012	

Low Energy Electron Cooling at RHIC

Simulation of luminosity with electron cooling at beam energy of 3.85 GeV/n ($V s_{NN} = 7.7 \text{ GeV}$).

Timeline for RHIC's Next Decade

	Years	Beam Species and Energies	Science Goals	New Systems Commissioned
	2013	• 500 GeV $\vec{p} + \vec{p}$ • 15 GeV Au+Au	 Sea antiquark and gluon polarization QCD critical point search 	 Electron lenses upgraded pol'd source STAR HFT
No rur →I Stil thi:	2014 te: This wi n, without ower stati l need to c s energy la	200 GeV Au+Au and baseline data via 200 I be a 3 week eded for cooling, bsystems) stics (30-40M) ome back to ter	 Heavy flavor flow, energy loss, thermalization, etc. quarkonium studies 	 56 MHz SRF full HFT STAR Muon Telescope Detector PHENIX Muon Piston Calorimeter Extension (MPC-EX)
	2015- 2017	 High stat. Au+Au at 200 and ~40 GeV U+U/Cu+Au at 1-2 energies 200 GeV p+A 500 GeV p + p 	 Extract η/s(T_{min}) + constrain initial quantum fluctuations further heavy flavor studies sphaleron tests @ μ_B≠0 gluon densities & saturation finish p+p W prod'n 	 Coherent Electron Cooling (CeC) test Low-energy electron cooling STAR inner TPC pad row upgrade
	2018- 2021	 5-20 GeV Au+Au (E scan phase 2) long 200 GeV + 1-2 lower √s Au+Au w/ upgraded dets. baseline data @ 200 	 x10 sens. increase to QCD critical point and deconfinement onset jet, di-jet, γ-jet quenching probes of E-loss mechanism color screening for different qq states transverse spin asyms. Drell-Yan & 	 sPHENIX forward physics upgrades The BES II program needs electron cooling
		GeV and lower \sqrt{s} • 500 GeV $\vec{p} + \vec{p}$ • 200 GeV $\vec{p} + A$	gluon saturation	Slide 11 of 18

Beam Energy Scan II

Is there another way?

Can another facility do this faster?

Or better?

10/26/2012

APS DNP Meeting – Town Meeting Newport Beach, CA

Slide 14 of 18

Nuclotron based Ion Collider fAcility (NICA)

 •Time Line: Not yet funded. Plan is to submit documents by end of 2012. Operations could not begin before 2017 (probably much later)
 •Energy Range: Vs_{NN} from 3.9 - 11 GeV for Au+Au; μ_B from 0.630 - 0.325 GeV.

APS DNP Meeting – Town Meeting Newport Beach, CA

Facility for Antiproton and Ion Research (FAIR)

Daniel Cebra 10/26/2012

APS DNP Meeting – Town Meeting Newport Beach, CA

Slide 16 of 18

Comparison of Facilities

Facilty	RHIC BE	SII	SPS	NICA	SIS-300
Exp.:	STAR PHENIX	<u> </u>	NA61	MPD	СВМ
Start:	2017		2009	>2017?	>2022?
Au+Au Energy: √s _{NN} (GeV)	7.7– 19	.6+	4.9-17.3	2.7 - 11	2.7-8.2
Event Rate: At 8 GeV	100 HZ		100 HZ	<10 kHz	<10 MHZ
Physics:	CP&OD		CP&OD	OD&DHM	OD&DHM
CP = Critical Point	Fixed Target				
OD = Onset of Deconfinement DHM = Dense Hadronic Matter			Lighter ion collisions RHIC is the		:
Daniel CebraAPS DNP M10/26/2012Nev			eting – Town Meeting ort Beach, CA	wn Meeting b, CA Slide 17 of	

Conclusions

There are scenarios that would see a limited time to termination of RHIC operations. • A BESII program in 2018 would not be run

• A shorter run without eCooling would not have the statistics needed

What would be lost?

- RHIC is optimally suited to find the critical point
- NICA and FAIR are **too low** in energy for CP searches
- NA61 is a **fixed-target** experiment and is running lighter ions
- → Without RHIC, the QCD phase diagram will not be understood
- Currently, the US is the leader in the field. Without RHIC, that leadership moves overseas.

Study of the phase diagram needs RHIC and eCooling!

Daniel Cebra 10/26/2012 APS DNP Meeting – Town Meeting Newport Beach, CA

Slide 18 of 18