Beam-beam simulations: dynamical effects and beam-beam limit for LEP3

K. Ohmi KEK-ACCEL LEP3 workshop, 23 Oct, 2012

Parameters of LEP3 given by F. Zimmermann

	LEP3		LEP3
beam energy Eb [GeV]	120	V _{RF,tot} [GV]	12.0
circumference [km]	26.7	$\delta_{\text{max,RF}}$ [%]	4.2
beam current [mA]	7.2	ξ _x /IP	0.09
#bunches/beam	4	ξ _y /IP	0.08
#e-/beam [10 ¹²]	4.0	f _s [kHz]	3.91
horizontal emittance [nm]	25	E _{acc} [MV/m]	20
vertical emittance [nm]	0.10	eff. RF length [m]	600
bending radius [km]	2.6	f _{RF} [MHz]	1300
partition number J _E	1.5	δ ^{SR} _{rms} [%]	0.23
momentum comp. α_c [10 ⁻⁵]	8.1	σ ^{SR} _{z,rms} [cm]	0.23
SR power/beam [MW]	50	L/IP[10 ³² cm ⁻² s ⁻¹]	107
$\beta^*_{x}[m]$	0.2	number of IPs	2
β* _v [cm]	0.1	Rad.Bhabha b.lifetime [min]	16
$\sigma_{x}^{*}[\mu m]$	71	Υ _{BS} [10 ⁻⁴]	10
σ* _ν [μm]	0.32	n _γ /collision	0.60
hourglass F _{hg}	0.67	$\Delta\delta^{ extsf{BS}}$ /collision [MeV]	33
ΔE ^{SR} _{loss} /turn [GeV]	6.99	$\Delta \delta^{\rm BS}_{\rm rms}$ /collision [MeV]	48

Parameters of TLEP-H given by F. Zimmermann

	TLEP-H		TLEP-H
		v fovd	
beam energy Eb [GeV]	120	V _{RF,tot} [GV]	6.0
circumference [km]	80	$V_{RF,tot}$ [GV] $\delta_{max,RF}$ [%]	9.4
beam current [mA]	24.3	ξ _x /IP	0.10
#bunches/beam	80	ξ_{v}/IP	0.10
#e-/beam [10 ¹²]	40.5	f _s [kHz]	0.44
horizontal emittance [nm]	9.4	E _{acc} [MV/m]	20
vertical emittance [nm]	0.05	eff. RF length [m]	300
bending radius [km]	9.0	f _{RF} [MHz]	700
partition number J _e	1.0	δ ^{SR} _{rms} [%]	0.15
momentum comp. α_c [10 ⁻⁵]	1.0	σ ^{SR} _{z,rms} [cm]	0.17
SR power/beam [MW]	50	L/IP[10 ³² cm ⁻² s ⁻¹]	490
$\beta^*_{x}[m]$	0.2	number of IPs	2
β* _v [cm]	0.1	Rad.Bhabha b.lifetime [min]	32
$\sigma_{x}^{*}[\mu m]$	43	Υ _{BS} [10 ⁻⁴]	15
σ* _v [μm]	0.22	n _γ /collision	0.50
hourglass F _{hg}	0.75	$\Delta\delta^{ extsf{BS}}$ /collision [MeV]	42
ΔE ^{SR} _{loss} /turn [GeV]	2.1	$\Delta \delta^{ extsf{BS}}_{ extrm{rms}}$ /collision [MeV]	65

3D beam-beam interaction

Strong-strong

- β_y =1mm, σ_z =2.3(LEP3)-1.7(TLEP-h)mm. For σ_z > β_y , the beam-beam force varies significantly along the bunch length.
- A bunch is divided into several slices which contain many macro-particles.
- Collision is calculated slice by slice.

$$\prod_{i=1}^{N_{sl,-}} \exp\left[-: V_{0,+}^{-1}(s_{-,i})\phi_{-,i}(+,s_{-,i})V_{0,+}(s_{-,i})\Delta s:\right]
\prod_{j=1}^{N_{sl,+}} \exp\left[-: V_{0,-}^{-1}(s_{+,j})\phi_{+,j}(-,s_{+,j})V_{0,-}(s_{+,j})\Delta s:\right]$$

drift between slices

$$V_0(s) \equiv V_0(s,0) = S \exp\left[-: \int_0^s H_0 ds :\right]$$

= $\prod_{i=\pm} \exp\left[-: \frac{p_{x,i}^2 + p_{y,i}^2}{2} s :\right],$

3D symplectic integrator for sliceby-slice collision

- Potential is calculated at s_f and s_b.
- Potential is interpolated to s_i between s_f and s_b.

- •Since the interaction depends on z, energy kick should be taken into account $d\phi/dz$.
- We repeat the same procedure exchanging particle and slice.

Potential and linear kick of he slice-by-slice collision

KEKB case K.Ohmi et al., PRST7, 104401 (2004)

$$k_y = \partial^2 \phi(s) / \partial y^2 = \Delta p_y / \Delta x$$

$$\phi_j(s) = \phi_j(s_b) + \frac{\phi_j(s_f) - \phi_j(s_b)}{s_f - s_b}(s - s_b)$$
 • potential is interpolated.

$$\phi_j(s) = \phi_j(s_c)$$

- potential at center of slice, BAD method

Convergence for the slice number

Simulation

- Radiation damping rate
 - LEP3 $\tau_{xy}/T_0=0.036$, $\tau_s/T_0=0.043$
 - TLEP-H $\tau_{xy}/T_0=0.013$, $\tau_s/T_0=0.00875$
- Track particles 1000 turns (2000 turns for half ring), >10x T₀/τ_{xy}.
- Target luminosity per collision
 - LEP3 L=2.675x10³³ cm⁻²s⁻¹
 - TLEP-H L=6.125x10³² cm⁻²s⁻¹
- N_{macrop}=1,000,000 n_{zslice}=16

- (v_x,v_y)=(0.51, 0.55-0.59) is the best for dynamic beta in horizontal and integrability in vertical in every e+e- colliders with single IP.
- (v_x,v_y)=(0.02, 0.10-0.18) for 2IP. The horizontal tune may not be acceptable.
- Luminosity dependence in tune space is shown in this presentation. (No strategy for optimization now.)

Simulation I (first trial)

- $v_x = 0.52, v_y = 0.58$
- Comparison between IP=I and 2.

Beam size

 v_x =0.52, v_y =0.58

First impression of the simulation results

- Dynamic beta works well for IP=1 in this operating point, (0.52,0.58), but does not for IP=2. This is reasonable result.
- Luminosity for IP=I is not very good. Usually this operating point showed higher luminosity than target one in KEKB.
- Vertical beam size increases in short time.
- Hourglass or large synchrotron tune may affect.

Systematic study: Tune scan

- IP=2, v_x =0.52, scan v_y
- Head-tail type of coherent motion appear $v_y>0.8$.
- Incoherent $v_y \sim 0.75$?

 $L_{\rm geo} \sim 2.675 \times 10^{33}$

Tune scan II

• IP=2, $v_y = 0.58 (0.29 \times 2)$, scan v_x

2e+33

L_{geo}~2.675×10³³

Coherent motion appears at $V_y > 0.8$

Slight upper of integer

Lgeo~2.675x10³³

 Best Luminosity, but lower than deisgn.

Bunch population and specific luminosity

• L= 2.6×10^{33} cm⁻²s⁻¹ is achieved at Ne= 1.1×10^{12} .

TLEP-H

TLEP-H

- Design luminosity
 6.1x10³² is reachable.
- Better result than LEP3.
- v_s is lower than LEP3.

Synchrotron tune (LEP3)

 Luminosity degradation at large synchrotron tune is seen.

• $v_x = 0.02, v_y = 0.19$ IP=2

Summary

- Beam-beam simulations has been performed for LEP3 and TLEP-H.
- Rough tune scan was done.
- To achieve the design luminosity in LEP3, 10% more bunch population is necessary at least. TLEP-H can achieve the design.
- The large synchrotron tune degrades the luminosity performance.
 - The treatment of synchrotron motion and z dependence of the beam-beam force should be checked.