Energy Calibration at LEP3 —
Lessons of LEP(2) 4 LEP3
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@ Resonant Depolarization
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a Resonant depolarization was the workhorse and absolute reference
for LEP(2) energy calibration. It relies on the relation between spin
precession frequency (or tune v,) and energy E:

E
V. =
* "~ 440.6486(1) [MeV]

QO Even if other methods are also considered, it should be made
available at LEP3 as absolute calibration reference.
o But it may not be available over the full energy range.
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Resonant Depolarization

Q In practice it is first of all necessary to have a polarized beam. At
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LEP this required special machine configurations (tunes, orbit, no
collisions etc).

It may not be compatible with physics data taking at LEPS3.
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Principle of RDP:
o Get a fast transverse kicker.
o Sweep the B-field and observe P,

o If the kicker frequency matches v,
P is rotated away from vertical
plane — spin/ flip or depolarization.

Q Very high intrinsic (and practical)
accuracy. At LEP the standard
measurement accuracy was +0.2 MeV.



Polarization

0 Under optimal machine conditions, a polarization P, of 57% was
measured at LEP around the Z resonance.

a In practice most E calibrations were performed with P, ~5-15%.

Q Above the Z the maximum polarization dropped quickly as the
energy spread (and therefore v, spread) became large(r).

o No P, was ever measured above 60 GeV.
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@ K-Modulation

Q The theoretical models also predicted that reducing the BPM offsets
would yield significant increase of P, in the range 50-60 GeV where
the measurements were difficult.

a Consequently special K-modulation windings were installed on all
LEP quads, and the BPM offsets were measured with accuracies of
50 um or less.

o Measurements were done during physics fills.

0 Unfortunately the results were a bit disappointing. The measured P
were much lower than hoped for...
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Towards 80 GeV

Q Since there was no direct energy calibration by RDP possible at
W energies, we had to use indirect measurements.

o Cross-calibration wrt RDP in the range 44-60 GeV.
o Interpolation to = 80 GeV

Q Three methods were used:
o The flux-loop that was spanning all LEP dipoles,
o A dedicated spectrometer,
o Synchrotron tune measurements.
a All three methods were used to establish corrections wrt to

modeled energies (LEP model) based on 16 NMR probes, tide
models, trains etc.

o See later for LEP energy model 2
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Flux-loop

a A flux-loop was installed (and calibrated) from the beginning in all
LEP dipoles. This loop was used for the first energy calibration at
the Z resonance (before RDP).

o Relative accuracy of ~few 10,
o No absolute calibration.
a The flux-loop was ‘resurrected’ for LEP2 where regular calibrations

were performed at different energy levels, including the range of
energies where RDP was available.

Dipole Yoke

4- <+«—Beam Pipe
/ y
NMR Probe
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@ Flux-loop results
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@ Spectrometer
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O A dedicated spectrometer was designed and installed in the LEP
ring for LEP2 energy calibration.

Principle:

o Dedicated dipole magnet, calibrated
with very high accuracy, and
instrumented with NMRs.

o On either side 3 high precision and

high resolution BPMs. BPM LEP BPM Bdl
: : . Triplet Dipole Triplet _ .
o Alignment drifts are controlled with a g g g 0= Epoun

stretched wire system.
o BPMs are cross-calibrated wrt RDP in

the range 44-6 0GeV. Quad Stes! Dipale Pickups  Quad
o The energy is determined from the “ ) , A Y
bending angle. v
\ Stretched-Wire Position Monitor | . , . |
Copper "Absorbers" 0 10 m
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@ Spectrometer magnet
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QO The spectrometer magnet
was a custom built 5.75m
steel dipole.

O Temperature regulated and
stabilized with dedicated
water-cooling.

QO Local field measurements
from 4 NMRs.

a Integral field maps with
relative accuracy ~10->.

43210123
Position [meters]
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Field [Gauss]
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Spectrometer BPM

Q For stability reasons, the BPMs were installed on Limestone Blocks
and connected by a stretched wire system.

o Quite some issues with synchrotron radiation effects on the wire system.

Q The BPM electronics had an accuracy of ~ 1 um. But it took a while

to get it.

Stretched Wire
5« Position Sensors

Shield

Jurassic Limestone Block
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@ Synchrotron tune

Q In parallel ideas were tested to take advantage of the strong energy
dependence of the energy loss by synchrotron radiation, « E#, to

%2

; determine the energy.
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Synchrotron tune

a Example of a Qs energy measurement, with calibration and
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Q The 3 methods eventually yielded very consistent corrections, but a
lot of analysis and systematic studies had to be made.

o Not sure that we would have been convinced by our results without this

triple redundancy.

a Eventually the consistency gave
us confidence that the results

were correct.

Final uncertainty:
+ 10 MeV

In the range 80-100 GeV.
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LEP energy model

Q The energy calibration experiments provided calibration at fixed
points in time.,
o For the Z width measurements, LEP was operated at 3 alternating
energies, and we tried to calibrate each off-peak fill (at the end).

a But for the physics analysis (e.g. Z or W), it was necessary to
provide energy information for the time of each events.

o Need a model to predict the energy at any time t !

a With experience it became possible to predict the energy based on
16 local NMR probes installed throughout the LEP ring.

o The NMRs are cross calibrated (RDP etc) to provide a base energy.

o The NMR energy is corrected for tides, circumference changes, local
energy shifts at the IPs from the RF, etc

= The LEP energy model

15
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Interpolation

a Example of a LEP energy
model test during a fill where
the energy was measured at
regular intervals.

Very good agreement !

Q Energy rise in fill is due to
trains =»

(4] [=2] o
T
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@ The Field Ghost

summer 1995 : the first field measurements inside ring dipoles.

i i
i ' ' i
1 ' ] i

The data showed (unexpected) : 46498, 16th August 1995

® Short term fluctuations
® Long term increase (hysteresis)
==) Energy increase of ~ 5 MeV
over a LEP fill !

46494

46490

Equivalent Beam Energy (MeV)

g ® Quiet periods in the night ! o014k
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But which one ?? Daytime
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@ Pipebusters

Vagabond currents
from

trains and subways

!

Source of electrical noise
and corrosion
(first discussed in ...1898 )

J.Wenninger - LEP fest
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LEP is affected by the French DC railway line Geneva-Bellegarde
mmmml> A DC current of 1 Ais flowing on the LEP vacuum chamber.

Earth current —= N

AC railway 15 kV

La Versoix

Entrance/exit points :

* Injection lines (Point 1)
e Point 6 (Versoix river)

19



@) TGV for Paris

November 17th 1995

November 1995 : Measurements of

e The current on the railway tracks
e The current on the vacuum chamber
e The dipole field in a magnet Railway Tracks

correlate perfectly !

Voltage on rails [V]
S

-0.012

0016 [

-0.020

Because energy calibrations were
usually performed :

* At the end of fills (saturation)
* During nights (no trains !)

-0.024
LEP Beam Pipe

T46.36

T46.34

T46.32

J.Wenninger - LEP fest

We "missed” the trains

T46.30

Bending field [Gauss] Voltage on beam pipe [V]

for many years !

T46.28

LEP NMR

16:50 16:55

Time
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F@:Aq The LEP Energy Calibration Working Group {C- -}

..

e

Q The LEP Energy Calibration Working Group was a highly
successful and exiting collaboration between the LEP machine and
experiments. All the studies of the LEP energy were coordinated
within this WG.

o At peak periods it had ~40 members, at the last meeting in 2004 only 5
of us were left over to discuss the last LEP2 paper !

o A similar collaboration should be set up for LEP3 if it is every built...

Q The precise energy calibration for such a large ring was a
fascinating detective work, where we (re-)discovered a lot of basic
physics - tides, vagabond currents from trains, etc.

o Each year we used 5 t010% of the scheduled time for calibration.

o The LEP(2) experience gives a head-start for future LEP3 energy
studies.

Energy Calibration / J. Wenninger / EUCARD LEP3 WS
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I@:Aq ‘ldeas & Recommendations’ : LEP(2) 4 LEP3 C _ :)

Q The obvious: you want to use RDP for absolute calibration.

Q Design a good, reproducible and fast polarimeter. Consider
separate polarimeters for e- and for e+.

0 Be ready to work with lower than anticipated polarization.

0 Consider offset measurements by K-modulation for all BPMs.

Q Provide sufficient BPM redundancy for good orbit correction.

Q Install NMR probes in a subset of your dipoles as field reference.
o Trains may come back...

Q In anticipation of possible absence of polarization, consider a
spectrometer-like device. Read carefully the LEP papers to learn
from the LEP experience and do it better (more than 3 BPMs on
each side...).

Energy Calibration / J. Wenninger / EUCARD LEP3 WS
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I@:Aq ‘|deas & Recommendations’ : LEP(2) 4 LEP3 (C

aIn a systematics dominated regime, watch out for dangerous
‘correlations’ or ‘'sampling effects’.
o We missed the train effect for years because we almost always
measured at nights or during week-ends !!

Q Explain your future physics coordinator that a precise energy
calibration requires lot’s of (MD) beam time.

Energy Calibration / J. Wenninger / EUCARD LEP3 WS

24

23.10.2012



Energy Calibration / J. Wenninger / EUCARD LEP3 WS

23.10.2012

References

A page with many papers and notes:
http://jwenning.home.cern.ch/jwenning/ECAL.html
The Energy Calibration WG:
http://lepecal.web.cern.ch/LEPECAL/

Main papers — LEP1.:
L. Arnaudon et al., Z. Phys. C 66 (1995) 45.

R. Assmann et al., Z. Phys. C 66 (1995).
A. Blondel et al., Eur. Phys. J. C 11 (1999), 573-585.

Main papers — LEP2:
R. Assmann et al., Eur. Phys. J. C 6 (1999) 2, 187-223.
R. Assmann et al, Eur. Phys. J. C39 (2005), 253-292.

25


http://jwenning.home.cern.ch/jwenning/ECAL.html
http://jwenning.home.cern.ch/jwenning/ECAL.html
http://jwenning.home.cern.ch/jwenning/ECAL.html
http://lepecal.web.cern.ch/LEPECAL/

@

Focussh 1d-TAG ke
5i-W calorimeter Er.;u: ¢ :ﬁ;:::i:ﬂ {100 He
Hme
A A 07V i e
! Rooxin
: Expander inphg
O ptical bench (]
1 Loesr pu les
=im orber 1601 I :,.r'r’. -
Laser polatimeter
f : _,..-"h”m
? : L
Q Elacoon 1 - 1
o e o | - |
h | | LR =72 m:l:n:l.l : o
: | [ ——— s L R [ - == ==L P
c L L - : - ! Elarnrn
(@) s =" - 1
c e : L FoouEIngmbroe | bunch )
= ijgy-"':‘t':“ . - x poskocn ale  HEHI
Qo . bundch Io= MAIEIEMSL
= ' [ 1] KHzI Hiree
e Pock@mn
e oo
33 m Adp——————— ———*~

26

10.10.2000



