Benchmarking W,Z theory calculations used by LHC experiments

Uta Klein
University of Liverpool

NNLO QCD and HO EW corrections

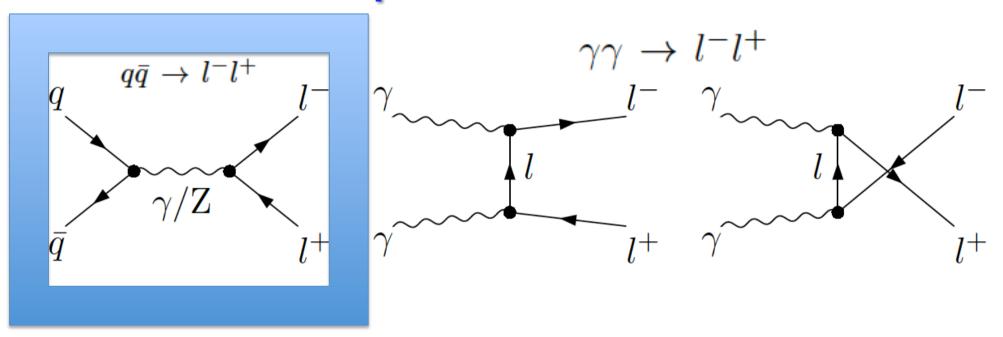
NNLO QCD : FEWZ 2.X and DYNNLO 1.0 \rightarrow used so far in the publications

World-new: FEWZ 3.1 (pre-releases used since several months):

Combining QCD and electroweak corrections to dilepton production in FEWZ, Ye Li, Frank Petriello, arXiv:1208.5967 (August 2012)

Aim:

Combine HO QCD and HO EW corrections for precision analysis of NC and CC DY production.


Focus by Atlas: Currently ongoing high and low mass Drell-Yan analysis

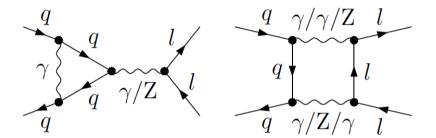
→ crucial to evaluate impact for NNLO QCD fits

Issues discussed here: benchmarking of results between the experiments

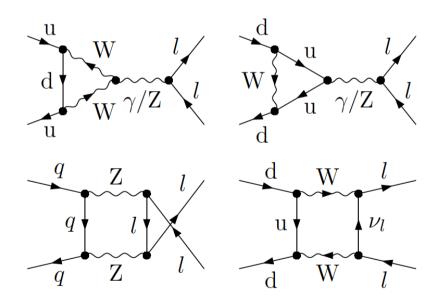
→ Quantify level of agreement between data and theory for the various experiments, e.g. CMS normalised cross sections while LHcb and Atlas compare to absolute cross sections → mandatory to understand the theory calculations performed by the experiments

Lowest order partonic cross section

Neutral Current Drell Yan processes

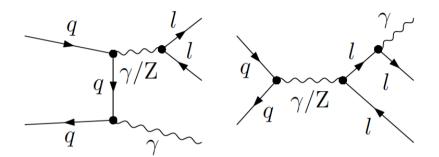

qqbar induced processes: sensitive to structure of the proton

Irreducible background

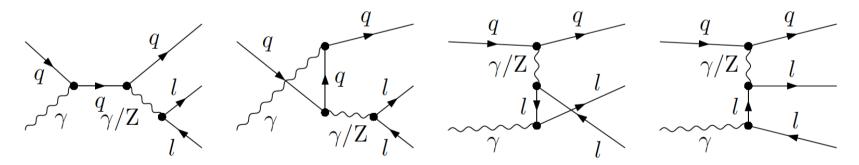

- γγ induced processes: QED process, and sensitive to structure of the photon
- → non-resonant; suppressed due to the smallness of the photon PDF
- → MRST 2004 qed fit (NLO QCD):" Parton distributions incorporating QED contributions", A.Martin, R.Thorne, hep-ph/0411040

HO EW processes: Vertex and Box diagrams

Photonic correction examples



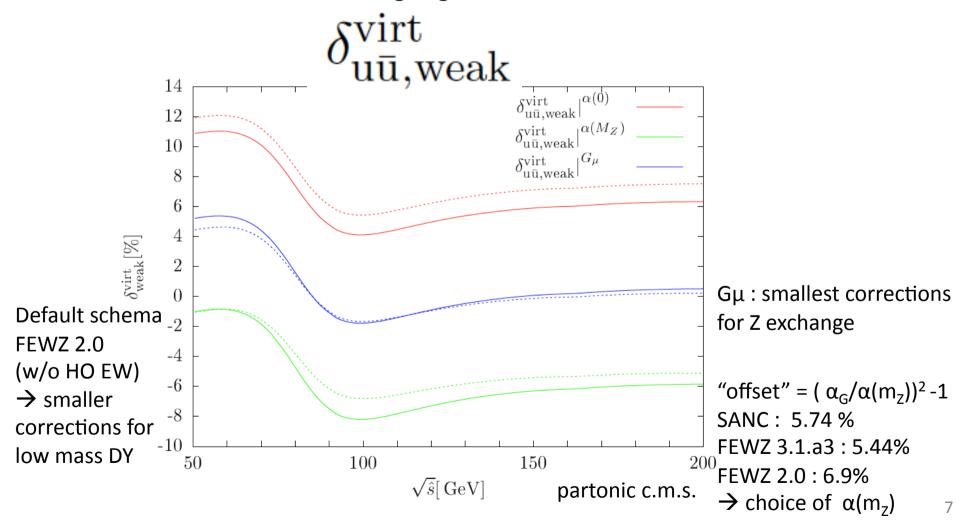
Weak correction examples



HO EW processes: Photonic corrections

 Real (single) photon emission examples

Photon induced processes with incoming quarks



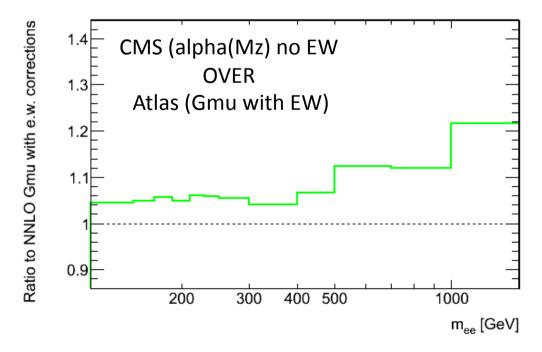
EW parameter schema

- $\alpha(0)$ -scheme: The fine-structure constant $\alpha(0)$ and all particle masses define the complete input. In this scheme, the relative corrections to the $q\bar{q} \to \gamma/Z \to l^-l^+$ cross sections sensitively depend on the light-quark masses via $\alpha \ln m_q$ terms that enter the charge renormalization. \rightarrow has to be used for photon induced processes
- $\alpha(M_Z)$ -scheme: The effective electromagnetic coupling $\alpha(M_Z)$ and all particle masses define the basic input. Tree-level couplings are derived from $\alpha(M_Z)$, and the relative corrections receive contributions from the quantity $\Delta\alpha(M_Z)$, which accounts for the running of the electromagnetic coupling from scale Q=0 to $Q=M_Z$ (induced by light fermions) and cancels the corresponding $\alpha \ln m_q$ terms that appear in the corrections to the $q\bar{q}$ channels in the $\alpha(0)$ -scheme. \rightarrow default schema in FEWZ 2.0, 2.1, e.g. used by CMS for PAS EWK-11-007 \rightarrow we use it as a cross check
- G_{μ} -scheme: The Fermi constant G_{μ} and all particle masses define the basic input. Tree-level couplings are derived from the effective coupling $\alpha_{G_{\mu}} = \sqrt{2}G_{\mu}M_{\rm W}^2(1-M_{\rm W}^2/M_{\rm Z}^2)/\pi$, and the relative corrections receive contributions from the quantity Δr [40], which describes the radiative corrections to muon decay. Since $\Delta \alpha(M_{\rm Z})$ is contained in Δr , there is no large effect on the $q\bar{q}$ channels induced by the running of the electromagnetic coupling in the G_{μ} -scheme either. \rightarrow we used it in our W,Z publication
 - → our nominal EW parameter schema

Scheme dependence of weak corrections

- Full lines : includes leading two-loop terms
- Dashed lines: include leading higher order corrections

Comparison Atlas - LHcb - CMS (CMS-PAS EWK-11-007)


Values obtained from Dimitri and Alexey (CMS) over Atlas Gmu schema+EW corrections Dedicated comparison for one bin 1000-1500 GeV

CMS (FEWZ 2.0 default alpha(Mz)) : 0.00122601 pb

Atlas (FEWZ 2.1 or FEWZ 3.1.a3 alpha(Mz) schema): 0.00121 pb (expect to be 1.3% → alpha (Mz) choice) → Katharina (LHcb) cross check performed at NLO and perfect agreement found with Atlas

Atlas (FEWZ 2.1 or FEWZ 3.1.a3 Gmu): 0.00114 pb → Katharina (LHcb) cross check performed at NLO and perfect agreement found

→ BUT EW corrections to be added → OVERALL effects illustrated in plot below

LO predictions $M_{ll} > 50 \, {
m GeV}, \quad p_{{
m T},l^\pm} > 25 \, {
m GeV}, \quad |y_{l^\pm}| < 2.5, \; {
m arXiv:0911.2329v2}$ Table 1

 $2000-\infty$

MRST2004QED	
G_{μ} ; scales= M_{Z}	(!)

$M_{ll}/{ m GeV}$	50–∞	100–∞	$200-\infty$	500–∞	$1000-\infty$	2000-∞
$\sigma_0/{ m pb}$	738.733(6)	32.7236(3)	1.48479(1)	0.0809420(6)	0.00679953(3)	0.000303744(1)
$\sigma_0 _{\mathrm{FS/PS}}/\mathrm{pb}$	738.773(6)	32.7268(3)	1.48492(1)	0.0809489(6)	0.00680008(3)	0.000303767(1)

photon induced	$\delta_{\gamma\gamma,0}/\%$	0.17	1.15	4.30	4.92	5.21	6.17
	$\delta_{qar{q},\mathrm{phot}}^{\mathrm{rec}}/\% \ \delta_{qar{q},\mathrm{phot}}^{\mu^+\mu^-}/\%$					-4.24 -9.02	-5.66 -12.08

'Benchmark' FEWZ 3.1.b2
→ I could reproduce
exactly those numbers
within 0.2% for photon-
induced and weak
contributions (c.f. also
FEWZ 3.1. paper).
→ Perform calculations
for Atlas cuts and bins!
→ISSUE : how to ADD?

	$\delta_{\mathrm{multi}-\gamma}^{\mu^+\mu^-}/\%$	$0.073^{+0.027}_{-0.024}$	$0.49^{+0.18}_{-0.15}$	$0.17^{+0.06}_{-0.05}$	$0.23^{+0.07}_{-0.06}$	$0.33^{+0.09}_{-0.08}$	$0.54^{+0.13}_{-0.12}$
weak	$\delta_{qar{q}, ext{weak}}/\%$					-5.87	-11.12
Z 3.1.b2	$\delta_{ m h.o.weak}/\%$	0.030	0.012	-0.23	-0.29	-0.31	-0.32
ice	$\delta_{ m Sudakov}^{(2)}/\%$	-0.00046	-0.0067	-0.035	0.23	1.14	3.38

to be added: NLO photon induced (photon-quark contribution, not in FEWZ 3.1.) $\delta_{q/\bar{q}\gamma,\mathrm{phot}}/\%$ -0.11-0.210.381.53 1.91 2.34 $\delta_{\gamma\gamma,\mathrm{phot}}^{\mathrm{rec}}/\%$ -0.0060-0.032-0.11-0.14-0.16-0.23-0.011-0.058-0.22-0.30-0.39-0.590.0000450.00056-0.025-0.14-0.31-0.644.0(1)13.90(6)26.10(3)21.29(2)8.65(1)-11.93(1)

Working list for experiments

Benchmark exercise

- → Agree on tools: FEWZ 3.1.X including EW corrections (special: treatment of single photon QED FSR)
- → Agree on nominal schema: Gmu
- ♦ Agree on nominal PDF
- ♦ Agree on selected bins and cuts
- ♦ Agree on precision
- ♦ Perform alternative cross checks : change of EW schema

ToDo:

- agree on documentation of theory calculations per publication : where to put it?
- option: agree on a proposal for the forthcoming publications (and have our document as the baseline for the EW etc details)

To be discussed: final combination of photon induced effects and estimate theory uncertainties