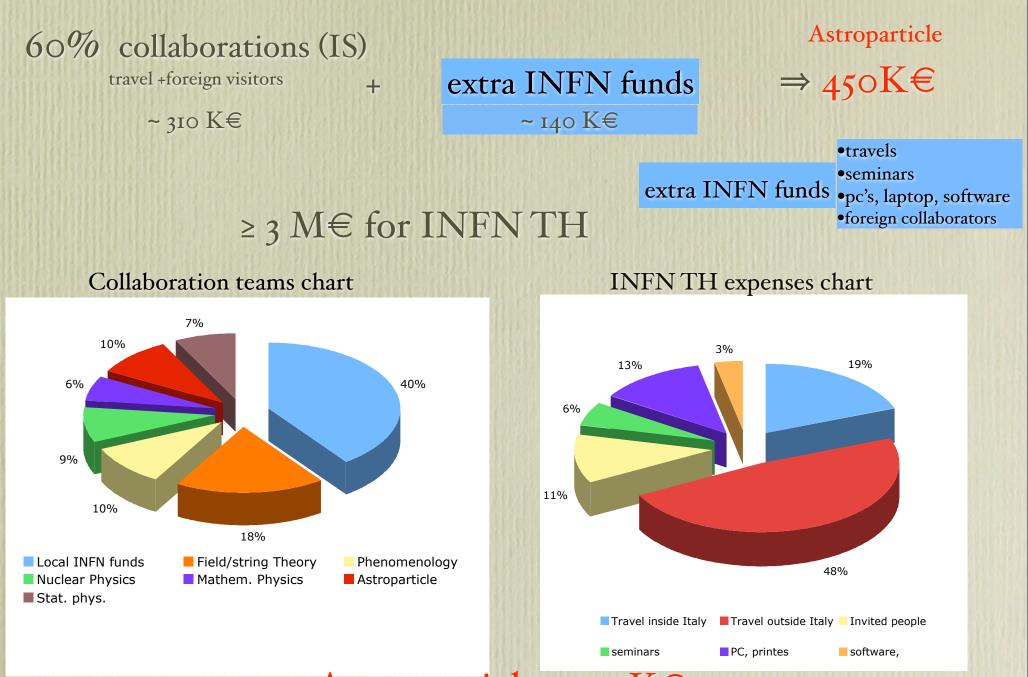
INFN-Theory Group-Astroparticle

Giancarlo D'Ambrosio

INFN-Sezione di Napoli


Outline

- Overall INFN structures
- Collaboration teams-(IS Iniziative specifiche)
- Description of the collaboration teams
- Funding -refereeing of the collaboration teams

INFN structures

- INFN has 5 groups, one of which is the Theory group (~ 750 members) chaired by G. Marchesini
- Theory group is divided in 6 subgroups, Astroparticle is one of them, with ~100 members
 (100% working on this subject/full time equivalent FTE)
- I am referee in collaboration with Francesco Vissani of the Astroparticle -Theory group of INFN

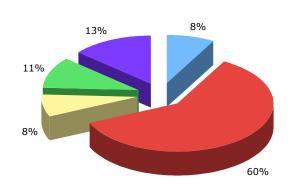
Astroparticle funding from INFN Theory

Astroparticle 450K€

Postdoc posititions

- INFN funds ten foreign TH post-docs per year. Fellows can choose where in ITALY : 2~3 go to astroparticles
- INFN funds also some TH post-docs for italians abroad: some (about 5) go to astroparticles

5 Collaboration- teams


- CT51 Compact stellar objects and dense hadronic matter (6 FTE)
- GS51 Phenomenolgy of planck scale physics (5 FTE)
- OG51 Modeling gravitational wave (GW) sources (11 FTE)
- **PD51** Inflation, dark matter, and the large-scale structure (16 FTE)
- FA51 50 FTE : Four subgroups

FA51 50 FTE: four subgroups

- A) Neutrinos in physics, astrophysics and cosmology (50%)
- B) Nuclear and subnuclear physics in the early universe (20%)
- C) Dark matter, dark energy and and cosmic structures (15%)
- D) Astrophysical sources of radiation (15%)

Chart of Collaboration teams

- CT51 Nucl.-astroph. (resp. M.Baldo)
- **GS51 Phen. of Planck scale** (resp. A. Grillo)
- OG51 Grav. waves (resp. V. Ferrari)
- PD51 Inflation,DM,structures (resp.S. Matarrese)
 - FA51 (resp.G. Fogli)
- A) Neutrinos (50%)
- B) Early universe (20%)
- C) Dark matter/ energy (15%)
- D) Astrophysical /radiation (15%)

CT51 FA51 GS51 OG51 PD51

Astroparticles

Budget follows FTE's

Physics highlights

- CT51 COMPACT STELLAR OBJECTS AND DENSE HADRONIC MATTER European Project ESF (CompStar)
- GS51 PHENOMENOLOGY OF PLANCK SCALE PHYSICS (relation with AGN)
- Purpose of the OG51 collaboration is modeling gravitational wave (GW) sources through theoretical studies and numerical simulations.
- PD51 INFLATION: THEORETICAL PREDICTIONS AND OBSERVATIONAL TESTS. Study of CMB anisotropies: BOOMERanG, MAXIMA-I, DASI, CBI, ARCHEOPS, WMAP. DARK MATTER AND DARK ENERGY: ASTROPHYSICAL AND COSMOLOGICAL ASPECTS PAMELA, AGILE and GLAST

FA51: largest team (for historical reasons: I coll. team)

A) Neutrinos (50%)

B) Early universe (20%)

C) Dark matter/ energy (15%)

D) Astrophysical /radiation (15%)

- A) NEUTRINOS IN PHYSICS, ASTROPHYSICS AND COSMOLOGY Solar neutrino physics, stellar astrophysics, Physics of atmospheric and (long-baseline) accelerator neutrinos, Properties of neutrinos of astrophysical origin (supernovae, nucleosynthesis). Absolute neutrino masses.
- B) NUCLEAR AND SUBNUCLEAR PHYSICS IN THE EARLY UNIVERSE Extended theories of gravitation and cosmology, CP violation, baryogenesis and leptogenesis, big bang nucleosynthesis
- C) DARK MATTER, DARK ENERGY AND AND COSMIC STRUCTURES Supersymmetric and mirror models Direct and indirect signatures of particle dark matter Cosmic background radiation (CMBR)
- D) ASTROPHYSICAL SOURCES OF RADIATION Nuclear reactions and stars evolution. Ultra high energy cosmic rays,Gamma ray bursts

European networks: ILIAS ENTAPP ISAPP

PhD Thesis

	CT	GS	OG	PD	FA
FTE	6	5	II	16	50
PhD 2004	I	-	2	I	9
PhD 2005	I	0	0	I	5
PhD 2006	0	0	I	4	5
PhD 2007	Ι	2	5	3	4
	3	2	8	9	23

GS51 new

Popular papers in the last three years

	CT	GS	OG	PD	FA
>10 citations	9	18	8	66	115
>50 citations	0	0	I	6	15
>100 citations	0	0	0	2	5

Popular authors: G.Fogli (BA), S. Matarrese(PD) S.T. Petcov (TS) (seniors); E. Lisi (BA), A. Strumia (PI),P.Ullio(TS) (mature); G.Bertone (PD), S. Liberati (TS) (junior)

Some popular papers in the last four years

# citations	Arguments	Authors	Collaboration
245	Global analysis of three-flavor neutrino masses and mixings.	G.Fogli-E.Lisi (BA), et al. Prog.Part.Nucl. Phys. 57:742, (06)	FA51
189	Non-Gaussianity from inflation: Theory and observations	S. Matarrese (PD) et al. Phys.Rept.402:103 (04)	PD51
189	Dark SUSY:Com- puting supersym- metric dark matter properties numerically	P. Ullio (TS) et al. JCAP 0407:008 (04)	FA51
145	Theory of neutrinos: A White paper	S.T. Petcov (TS) <i>et al.</i> Rept.Prog.Phys. 70:1757,(07)	FA51
131	Neutrino masses and mixings and	A.Strumia (PI), F.Vissani (LNGS) hep-ph/0606054	PD51& FA51
134	Implications of neutrino data circa 2005	F. Vissani, (LNGS) <i>et al</i> . Nucl.Phys.B726:294-316,(05).	FA51

International refereeing every three years

- In order to finance our collaboration teams we ask several international referees to rate them (A,B,C)
- Local referees then finance accordingly