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Relativistic Electrons vs. Protons 

• Electron Mass = 511 keV/c2 

• Proton Mass = 938 MeV/c2 

Standard accelerator technology can produce 
electrostatic gaps of 100 kV to 500 kV : 

e-(100 keV) = 0.548 ,   e-(500 keV) = 0.863 

By comparison : P(100 keV) = 0.0146 

 

Standard RF Guns can produce 3 to 10 MV  

accelerating gap   e-(3 MeV)= 0.9894 
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Laser Superconducting RF Gun: 10 MV 
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• Laser and Photocathode are driving the bunch charge and 
emittance. 

• RF cavity is driving the beam energy 

Laser parameters 
(BNL) 

263 nm Nd:YLF laser 0.3 W 250 kHz 

HZDR 

e-(10 MeV)= 0.9988 



ITER Neutral Deuteron Injection: 1 MV 
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P(1 MeV)= 0.0461 ; D(1 MeV)= 0.0326 



RF Quadrupole (6m) 

Diagnostics Dump 
300 kW 

guides d’onde 

One RFQ sector (1m) 

A 3 MeV Proton Injector : IPHI 

 RF distribution: 
2 MW CW 352 MHz 

100 kV ECR source 

P(100 keV) = 0.0146 P(3 MeV)= 0.0797 

100 kV electrostatic 
extraction 
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Overall efficiency is about 300 kW/4 MW ~ 10 % 



guides d’onde 

A 160 MeV Proton Facility: LINAC4  
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The RFQ cavity realizes 
a) beam focusing 
b) bunching 
c) beam acceleration 
 
Video of beam bunching over the 
first 1 m RFQ sector, RF acceleration 
takes place after bunching. 

P(160 MeV)= 0.520 

84 m 



v = 0 

v = c 

v < c 

Er 

Electrostatic field 

in the rest frame 

 = 1 

 =  

“Shock Wave” 

in the lab frame 

Lorentz force:  F = q’(E + v  B)  (1  vv/c2) / r 
 

 No Intra-beam (‘space charge’) Forces for  =  

 Strong Colliding Beam-Beam Forces 

Main Message: space charge forces are dominating 

the low-energy high-charge proton bunches transport   

1/ 
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The Electromagnetic Field of a Relativistic Charge q 

q 

q 

q 

q’ 
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A 1 GeV Proton Facility : SNS 
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SNS Linac RF Structures : 331 m 

• MW class: 1.5 MW in the linac, 26 mA average in 
the 1 ms pulse (65 pC@400 MHz), 60 Hz (6%)  

2.5 MeV 1 GeV 87 MeV 

CCL SCL, =0.61 SCL, =0.81 

186 MeV 386 MeV 

DTL RFQ Reserve H- 

P(1 GeV)= 0.875 

SCL 
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Neutron Facility Application: SNS 

Proton parameters, from the neutron target standpoint: 

• Kinetic energy : 1 GeV 

• Pulse repetition : 60 Hz 

• Proton short-pulse length: 695 ns  

• Total charge : 24 µC (about 65 pC @ 0.57 THz) 
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Applications 
• Applications 

– Proton Colliders (Tevatron, LHC) 
– Neutron sources (SNS, ESS, IFMIF) 
– Neutrino sources (Project X, SPL) 
– Radioactive Ion Beams (FRIB, EURISOL) 
– Accelerator Driven Systems (Ch-ADS, MYRRHA) 

 
Only colliders are using protons as the particles of interest 
for physics processes. 
For the other 4 applications, proton (or deuteron) beams 
are used to drive the production of the secondary beams of 
interest: neutrons or neutrinos. 
 Proton beam ‘high level’ parameters may lead to 
different beam requirements on standard vs. laser-based 
driver accelerators.  
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High Energy Proton Colliders 

The discovery of the Higgs Boson, at the LHC and the TeVatron 
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Higgs, Brout, Englert 

h0  Z0 Z0* 
mh0

~126 GeV 



High Energy Proton Colliders 

Like the major past scientific findings, the discovery of 
the Higgs boson elevates Mankind’s Perspective: our 
world obeys U(2)-symmetric laws of dynamics, despite 
the so-far resolved U(1) symmetry. 
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‘U(2) rotation’ 
symmetric Higgs 

Lagrangian. 

‘U(2) rotation’ 
asymmetric 

ground state. courtesy P. Oddone 



The Tevatron at Fermilab (Chicago) 

Proton-antiproton collider 1 TeV x 1 TeV 
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The LHC at CERN (Geneva) 

 Proton-proton Collider 7 TeV x 7 TeV (design) 

Luminosity = 1034 cm-2s-1 
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LHC 

SPS 

PS 



Collider Luminosity 

The counting rate NE  of physical events E  created during the collision of two 

proton bunches is given by: 
 
where 

•  
E
  is  the cross-section of the event pp E 

•  L  is the integrated luminosity over the collision. 

 

N
E
 , 

E
 , et  L  are Lorentz invariant quantities 

t 

p p p p 

EE  LN
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Proton Beams for LHC Injection 
Proton beam specifications for injection in the Booster ring 
Ions species: H- 
Energy: 160 MeV 
Bunch intensity: 40 mA 
Bunch frequency: 352.2 MHz  
Beam Power:  5.1 kW 
Duty cycle: 0.1 % (222/133 transmitted bunches/empty buckets) 
Pulse length: 400 µs 
Transverse emittance (XX’): 0.4 Pi.mm.mrad 
Bunch length:  60 ps 
Bunch dispersion DE/E ~0.1% 
N. particles per bunch: 1.14 ·109 

 

There are later stages of injection in the PS and SPS synchrotrons. 
Ultimately, about 2600 proton bunches (400 GeV, 23 nC/25 ns) will be 
injected in each of the two LHC storage rings, about every 10 hours. 
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FRIB 
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SPIRAL-2 
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TRIUMF 

SNS 

JPARC RCS 

CSNS 

MMF 
LANSCE 

NF/MC 
Prj-X 

SPL 
ESS 

Prj-X MR 

NUMI 

JPARC MR 

AGS 
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NOVA 

Existing (SP) 
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Planned (SP) 

Planned (LP) 

Material test 

ADS 

Neutron Science 
or multi-purpose 

High energy 
Physics  Central challenge 

at the beam power 
frontier is 
controlling beam 
loss to minimize 
residual activation 

 1 W/m at 1 GeV 
proton beam 

Beam Power Frontier for Ion Beam Facilities 
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(Courtesy of J. Wei and S. Henderson) 

High Level Parameters for High Power Proton 
Accelerators (HPPA)  
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Neutrons are produced through the spallation process 
on heavy nuclei: 

Neutron sources 
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• The average energy deposited on the 
target, about 50 MeV/n, is lower than for 
deuteron induced nuclear processes. 

• About 20-40 neutrons are produced per 
primary proton. 

• Neutrons with a broad energy spectrum, 
peaked on 1 MeV. 



ESS is a long pulse (3 ms) neutron source 

European Spallation Source (ESS) 
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Proton Beams for ESS 

Proton beam specifications 
Energy: 2.5 GeV 
Average Beam Power:  5 MW 
Number of protons per bunch: 0.88 ·109 
Bunch repetition frequency: 352.21 MHz  
Pulse intensity: 50 mA 
Pulse length: 2.86 ms 
Repetition rate: 14 Hz 
Duty cycle: 4 % 
Transverse normalized emittance (XX’): 0.22 Pi.mm.mrad 
Bunch length:  10 ps 
Bunch dispersion DE/E ~0.04% 
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These are the RF-accelerator ‘biased’ parameters of ESS. 



ESS: Beam Density on Target 
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Proton beam : 
Energy: 2.5 GeV 
Pulse: 3 ms@14 Hz 
Footprint: 16060 mm2 

 
Transverse profile flattening 
is needed to reduced the 
time-average peak intensity 
on target from : 
250 µA/cm2 to 52 µA/cm2 

 
Homogeneity is not an issue 

These are the high level parameters of ESS 



International Fusion Material Irradiation 
Facility (IFMIF) 
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Deuteron beam profile  
Energy: 40 MeV (hardly relativistic), CW 
Cross-section : 22070 mm2 
Average intensity on target : 1 mA/cm2  
Homogeneity : < 5% 

These are the high level parameters of IFMIF 



The JPARC facility includes a high energy, short pulsed, proton 
beam on Hg or W targets to produce neutrinos beams from pions 

and muon decays  neutrino oscillations at SuperKamiokande 

Neutrino Sources 
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Project X Reference Design 
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H- beams are used whenever the beam is injected (and stripped to H+) in a 
compressor ring to produce short pulses, e.g. SNS, NuFact, … 

Project X at Fermilab 



Proton Beams for Neutrino Beams 

Proton beam specifications at injection in pulse-compressor ring  
(e.g. SPL) 
Energy : 3.5 GeV 
Bunch intensity: 40 mA 
Bunch frequency: 352 MHz  
Beam Power:  4 MW 
Duty cycle: 3 % (52% during pulse) 
Pulse length: 0.57 ms 
Transverse emittance (XX’): 0.4 Pi.mm.mrad 
Longitudinal emittance (ZZ’): 0.6 Pi.mm.mrad 
Bunch length:  10 ps 
Bunch dispersion DE/E ~0.04% 
Number of  particles per bunch: 1.14 ·109 
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These parameters are required for beam injection in the ring. 



Radioactive Ion Beams (RIB) 

ICAN, CERN, 27/06/13 O. Napoly 30 

Proton Driver Linac (1 GeV) 



Proton Beams for RIB 

Proton beam specifications for Eurisol 
 
Energy : 1 GeV 
Beam Power:  5 MW 
Bunch intensity: 5 mA 
Bunch frequency: 176 MHz  
Number of  particles per bunch: 1.8·108 (28 pC) 
Duty cycle: 100 % 
Transverse emittance (XX’): 0.25 Pi.mm.mrad 
Longitudinal emittance (ZZ’): 0.4 Pi.mm.mrad 
Bunch length:  30 ps 
Bunch dispersion DE/E ~0.1% 
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These are the RF-accelerator ‘biased’ parameters of EURISOL. 
High level parameters on the UCx target (sorry, next time !). 



Accelerator Driven System Principle 
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Challenge #1: high CW beam power (2-16 MW) 

Challenge #2: very high reliability ! 

10 3 

Proton Beams for ADS 

Proton beam specifications 
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Proton Beams for ADS 
Proton beam specifications 
Energy: 600 MeV to 1 GeV 
Bunch intensity: 5 mA to 20 mA 
Bunch frequency: 704 MHz  
Duty cycle: 99.98% (CW, 200 µs hole every 1s) 
Transverse emittance (XX’): 0.25 Pi.mm.mrad 
Longitudinal emittance (ZZ’): 0.4 Pi.mm.mrad 
Bunch length:  30 ps 
Bunch dispersion DE/E ~0.1% 
 
 
 
Beam power stability: 1% 
Reliability: very high, a few beam trips < 3s per years 
Objective at target: fast neutron flux 1015n/(cm2 s) at En > 0.75 MeV 
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These are the RF-accelerator ‘biased’ parameters of EURISOL. 
The High level parameters on the target must be derived from 
the following requirements: 



Reactor 
• subcritical mode (50-100 MWth) 
• critical mode (~100 MWth) 

Accelerator 
(600 MeV – 4 mA proton) 

Fast 
neutron 
source 

Spallation source 

Lead-Bismuth 
coolant 

Multipurpose 
flexible 
irradiation 
facility 

~ 9 m 

• MYRRHA (Multi-Purpose hYbrid Research Reactor for High-tech Applications) 

• Project driven by SCKCEN (Belgium) 

MYRRHA Project 
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../../Documents and Settings/haitabde/MYRRHA Animation_2/MYRRHA_DV-4.avi
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MYRRHA Linear Accelerator 
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The Accelerator and Reactor Buildings 
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Conclusions 
• Producing relativistic proton beams meets the needs 

of many applications to pure and applied research, 
and to societal needs. 

• In most cases, Proton beams are only used to 
generate the secondary beams of interest: neutrons 
or neutrinos. LHC is the exception. 

• Producing relativistic proton beam by standard 
accelerator technology is very demanding in 
accelerating structures, real estate, and power: 

a Laser based proton injector (~1 GeV) would be a 
 ‘modest’ but paying first step. 
 

• High average intensity or luminosity is a must. 
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