Neutrino oscillations: recent results and perspectives

Yu. Kudenko and M. Khabibullin

Institute for Nuclear Research, Moscow

IHEP, Protvino, Russia, 27 June 2013

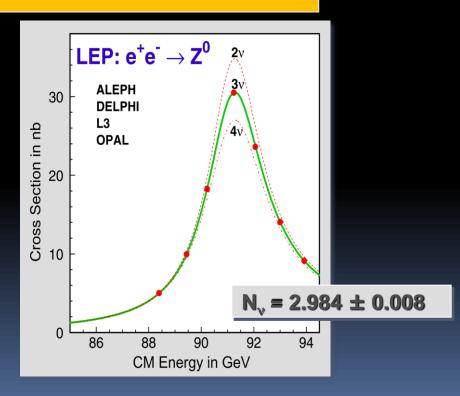
OUTLINE

- **□** neutrino oscillations
- **□** long baseline accelerator experiments
- \Box measurements of θ_{13}
 - accelerator experiments
 - reactor experiments
- □ near and far future perspectives

Standard Model

Three neutrino flavours: v_e v_μ v_τ Neutrino – partner of charged lepton: $W \to e v_e$ $W \to \mu \nu_\mu$ $W \to \tau \nu_\tau$ Neutrinos – massless particles

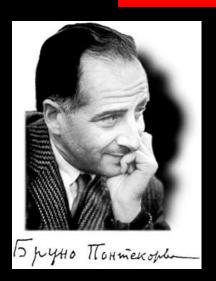
Lepton numbers L_e L_{μ} L_{τ} conservation

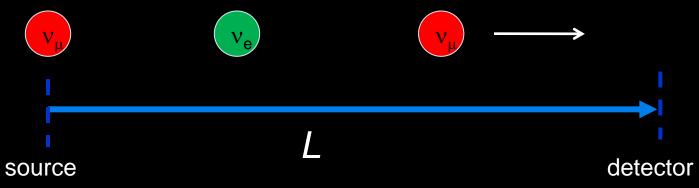

Neutrino oscillations forbidden

CP = 1 in lepton sector

LEP experiments: from the width of Z

Three active neutrinos

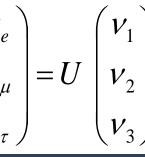


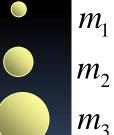


Neutrino oscillation hypothesis

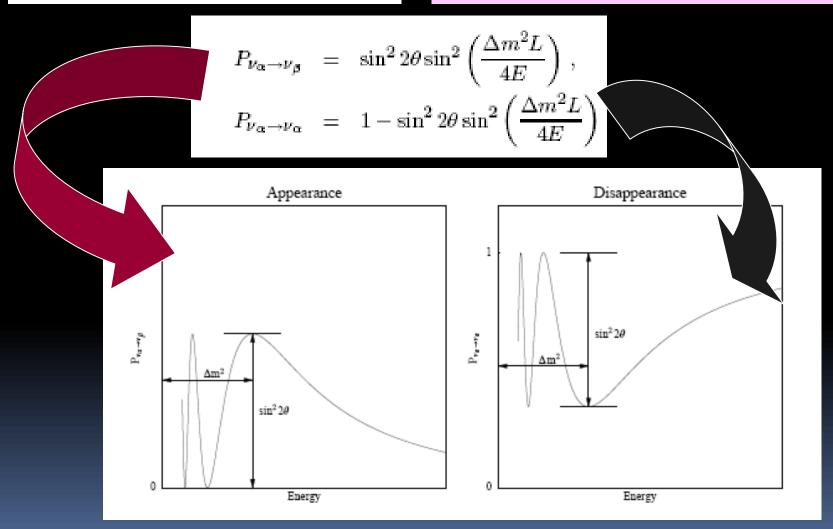
B. Pontecorvo: the idea of massive neutrino and oscillations – 1957

- neutrino antineutrino transitions
- non-zero mass and mixture of neutrinos
- oscillation probability depends of neutrino mass, neutrino energy **E**, and path length **L**

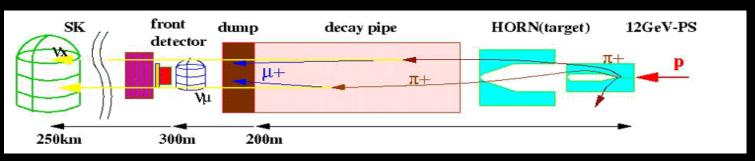



Weak interaction eigenstates

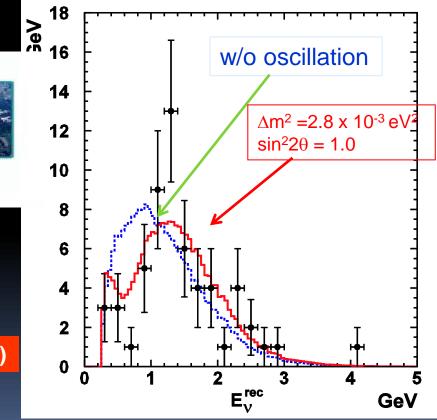
Mass eigenstates

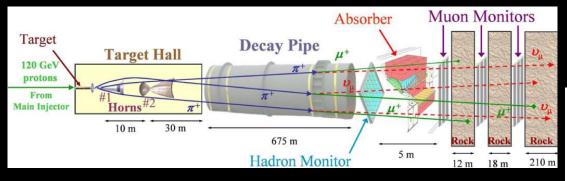

Weak (active) eigenstates are not equal to mass eigenstates

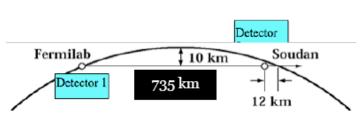
2 types of oscillation experiments


Oscillation experiments:
Appearance and Disappearance

Baseline, L Neutrino energy, Ev fixed measured


K2K: first LBL experiment


K2K confirmed **SK** result: oscillations of atmospheric neutrinos


Null oscillation probability = $0.0050\%(4.1\sigma)$

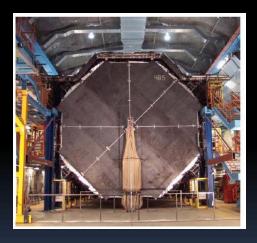
MINOS

Proton beam: 120 GeV protons

 $v_{\rm e}$ beam: v_{μ} 92.9%, anti- v_{μ} 5.8%, ($v_{\rm e}$ + anti- $v_{\rm e}$) 1.3%, peak energy ~(3-9) GeV

~1 kT Near Detector

Far Detector


5.4 kton magnetized Fe/Sci Tracker/Calorimeter

Near Detector

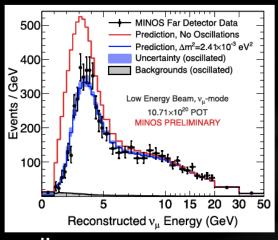
980 ton at L ≈ 1 km

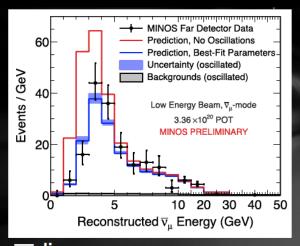
the same technology in

both detectors

5.4 kT Far Detector

MINOS


almost final result


 $\nu \rightarrow$


2894 events detected in MINOS Far Detector 3564 event expected in the absence of oscillations

anti-v →

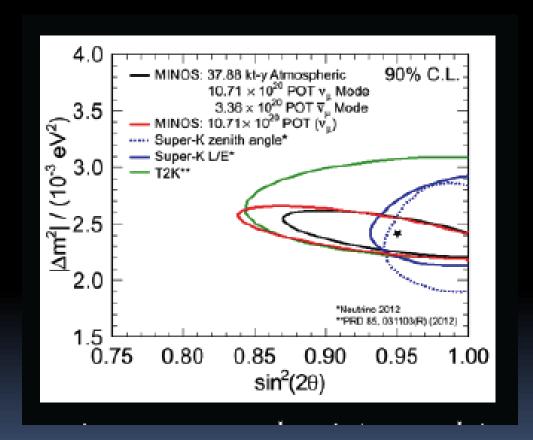
226 events detected in MINOS Far Detector 312 events expected in the absence of oscillations

V

 $|\Delta m|^2$ =(2.35+0.11-0.08) x 10⁻³ sin²(2 θ)>0.91 (90% CL)

anti-v

Δm²=(2.64+0.28-0.27) x 10⁻³ sin²(2θ)>0.78 (90% CL


no tension between neutrinos and antineutrinos

MINOS: combined v + anti-v

All data sets (neutrino, anti-neutrino, atmospheric) combined for final measurement of v_{μ} disappearance parameters

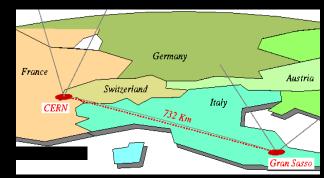
arXiv:1304.6335

Combined analysis

$$\sin^2 2\theta = 0.950^{+0.035}_{-0.036}$$

$$|\Delta m^2| = 2.41^{+0.09}_{-0.10} \times 10^{-3} \text{eV}^2$$

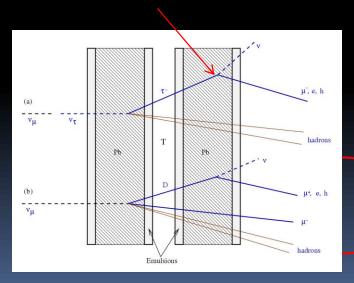
a hint on non-maximal mixing angle θ_{23}


OPERA

 $\nu_{\mu} \rightarrow \nu_{\tau}$ direct search

 $P(v_u \rightarrow v_\tau) = \cos^4\theta_{13}\sin^2\theta_{23}\sin^2[1.27\Delta m_{23}^2 L(km)/E(GeV)]$

High energy, long baseline ν beam (E \approx 17 GeV L \sim 730 km)


kink

Target mass ~1300t

3UUT

 $E/L \sim 2.3 \times 10^{-2} \sim 10 \Delta m_{23}^2 \text{ (atm)}$

pure beam: 2% anti v_{μ} ; <1% v_{e}

Main background

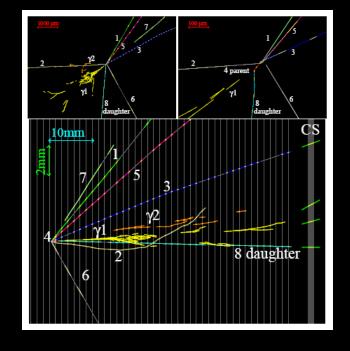
Expectation after 5 years data taking:

~22000 v interactions

~120 v_{τ} interactions

~10 v_{τ} reconstructed

<1 background event


OPERA

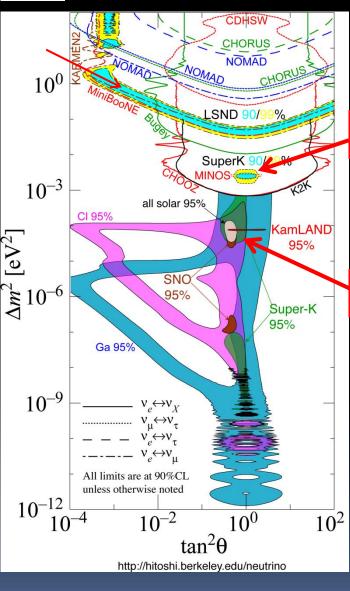
1st event

For $|\Delta m|^2 = 2.5 \times 10^{-3} \text{ eV}^2$ 18.9x10¹⁹ POT

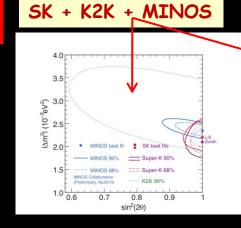
- 2.7 tau events expected
- 0.3 events background

3 candidates observed

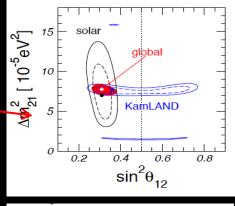
2nd event

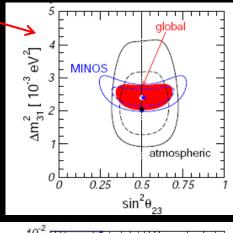


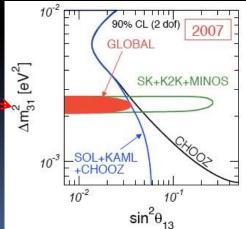
Oscillation results


atm

SOL




By June 2011


Solar + KamLAND

CHOOZ +atm + LBL $\sin^2(2\theta_{13})<0.11$ (90%CL)

v oscillations and mixing

Standard Model: neutrinos are *massless* particles

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

3 families
$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
 $U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$ solar

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-3\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-3\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{\mu} \\ v_{\mu} \\ v_{\tau} \end{pmatrix}$$

$$\begin{pmatrix}
\cos\theta_{12} & \sin\theta_{12} & 0 \\
-\sin\theta_{12} & \cos\theta_{12} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
\nu \\
\nu \\
\nu
\end{pmatrix}$$

link between atmospheric and solar

 θ_{23} ~45⁰

$$\Delta m_{23}^2 \cong \Delta m_{31}^2 =$$

$$\Delta m_{atm}^2 \approx 2.4 \times 10^{-3} \text{ eV}^2$$

U parameterization:

three mixing angles
$$\theta_{12}$$
 θ_{23} θ_{13} CP violating phase δ

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

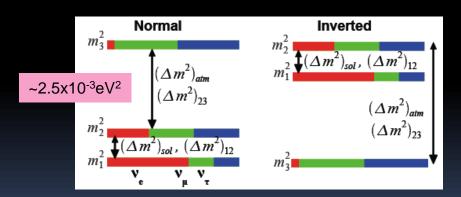
$$\Delta m_{12}^2 + \Delta m_{23}^2 + \Delta m_{31}^2 = 0$$

 $\theta_{12} \sim 34^{\circ}$

$$\Delta m_{12}^2 = \Delta m_{sol}^2 \approx 7.5 \times 10^{-5} \,\text{eV}^2$$

two independent Δm^2

by June 2011


 $\sin^2 2\theta_{13} < 0.15$ at 90% CL

Before Summer 2011

T.Schwetz, M.Tortola, J.Valle, hep-ph:1103.0734v2

parameter	best fit $\pm 1\sigma$	2σ	3σ
$\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$	$7.59^{+0.20}_{-0.18}$	7.24-7.99	7.09–8.19
$\Delta m_{31}^2 [10^{-3} \mathrm{eV^2}]$	$2.45 \pm 0.09 -(2.34^{+0.10}_{-0.09})$	$2.28 - 2.64 \\ -(2.17 - 2.54)$	$ 2.18 - 2.73 \\ -(2.08 - 2.64) $
$\sin^2 \theta_{12}$	$0.312^{+0.017}_{-0.015}$	0.28 – 0.35	0.27 – 0.36
$\sin^2 \theta_{23}$	0.51 ± 0.06 0.52 ± 0.06	0.41–0.61 0.42–0.61	0.39-0.64
$\sin^2 \theta_{13}$	$\begin{array}{c} 0.010^{+0.009}_{-0.006} \\ 0.013^{+0.009}_{-0.007} \end{array}$	$\leq 0.027 \\ \leq 0.031$	$\leq 0.035 \\ \leq 0.039$

- \checkmark only upper limit on θ_{13}
- $\checkmark \theta_{23}$ maximal?
- \checkmark mass hierarchy (sign of Δm_{31}^{2})
- ✓ no hint on CP violation

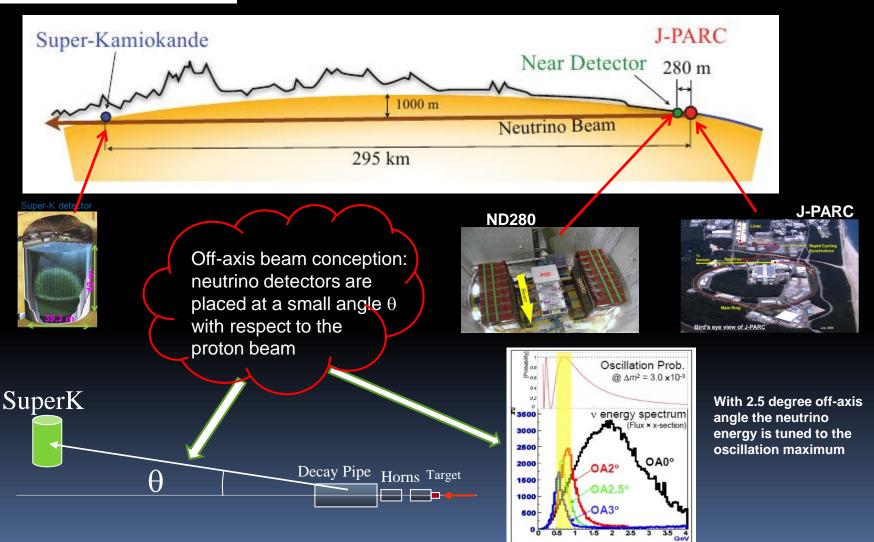
?? θ_{13} , mass hierarchy, δ ??

Importance of θ_{13}

- Zero value of θ_{13} would be a hint on a new symmetry (tri-bi-maximal)
- Zero value of θ_{13} would eliminate a possibility for the CKM mechanism in neutrino mixing
- A non-zero value of θ_{13} opens a door for searching of leptonic CP violation
- A non-zero (and not small) value of θ_{13} gives good chances for measurement of mass hierarchy and CP violation in neutrino oscillations using present neutrino beams and detectors

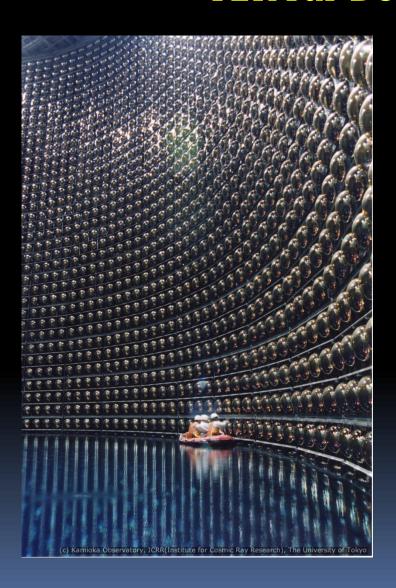
The size of θ_{13} \rightarrow Future Program of neutrino physics

LONG-BASELINE NEUTRINO OSCILLATION EXPERIMENT


T2K: - search for $v_{\mu} \rightarrow v_{e}$

- measurement of θ_{13}

- CP - violation


- >500 members from 12 countries

- Russia: INR RAS

SuperKamiokande – T2K Far Detector

50 kt of pure water;

Fiducial Volume: 22.5 kt

Inner Detector: >11000 PMTs (20")

Outer Detector: ~2000 PMTs (8")

(see talk by M. Smy)

Number of events /(250 MeV)

2

$6 v_e$ events

Data

(MC w/ $\sin^2 2\theta_{13} = 0.1$)

2000

Osc. v. CC

 $v_{\mu} + \overline{v}_{\mu} CC$ ve CC NC

Expected BG 1.5 ± 0.3 evts

3000

published in June 2011

ed FIRST clear indication

PRL 107, 041801 (2011)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending

About two years ago, T2K published

1000

Reconstructed v energy (MeV)

1 - Confirmation from MINOS

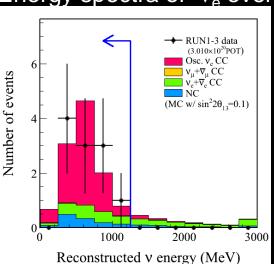
2 - Precise measurements by **Double Chooz**

RENO

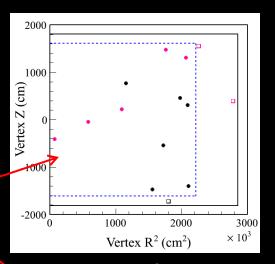
Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis **Muon Neutrino Beam**

K. Abe, ⁴⁹ N. Abgrall, ¹⁶ Y. Ajima, ^{18,†} H. Aihara, ⁴⁸ J. B. Albert, ¹³ C. Andreopoulos, ⁴⁷ B. Andrieu, ³⁷ S. Aoki, ²⁷ O. Araoka, ^{18,†} J. Argyriades, ¹⁶ A. Ariga, ³ T. Ariga, ³ S. Assylbekov, ¹¹ D. Autiero, ³² A. Badertscher, ¹⁵ M. Barbi, ⁴⁰ G. J. Barker, ⁵⁶ G. Barr, ³⁶ M. Bass, ¹¹ F. Bay, ³ S. Bentham, ²⁹ V. Berardi, ²² B. E. Berger, ¹¹ I. Bertram, ²⁹ M. Besnier, ¹⁴ J. Beucher, B. D. Beznosko, S. Bhadra, S. Bhadra, S. F. L.M. M. Blaszczyk, A. Blondel, C. Bojechko, S. J. Bouchez, S. B. Boyd, S. A. Bravar, 16 C. Bronner, 14 D. G. Brook-Roberge, 5 N. Buchanan, 11 H. Budd, 41 D. Calvet, 8 S. L. Cartwright, 44 A. Carver, 56 R. Castillo, M. G. Catanesi, A. Cazes, A. Cervera, C. Chavez, S. Choi, G. Christodoulou, L. Coleman, Control of the Coleman, C

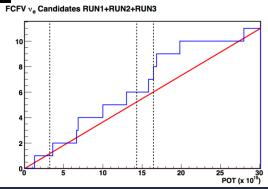
> The T2K experiment observes indications of $\nu_{\mu} \rightarrow \nu_{e}$ appearance in data accumulated with 1.43 × 10²⁰ protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with $|\Delta m_{23}^2| = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1$ and $\sin^2 2\theta_{13} = 0$, the expected number of such events is 1.5 ± 0.3 (syst). Under this hypothesis, the probability to observe six or more candidate events is 7×10^{-3} , equivalent to 2.5 σ significance. At 90% C.L., the data are consistent with $0.03(0.04) < \sin^2 2\theta_{13} < 0.28(0.34)$ for $\delta_{CP} = 0$ and a normal (inverted) hierarchy.


DOI: 10.1103/PhysRevLett.107.041801

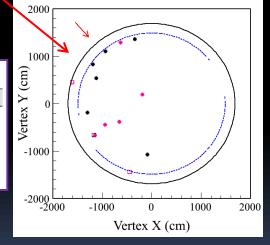
PACS numbers: 14.60.Pq, 13.15.+g, 25.30.Pt, 95.55.Vj


v_e events

Energy spectra of v_e events



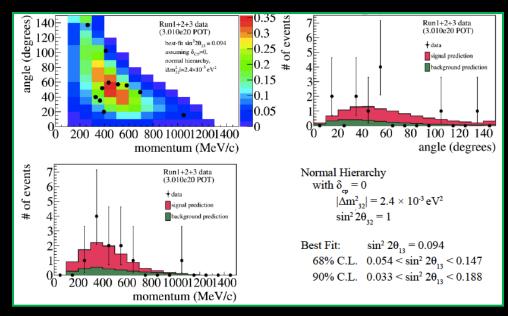
3.01x10²⁰ POT
Statistics accumulated from January 2010 to July 2012



p-value = 6%

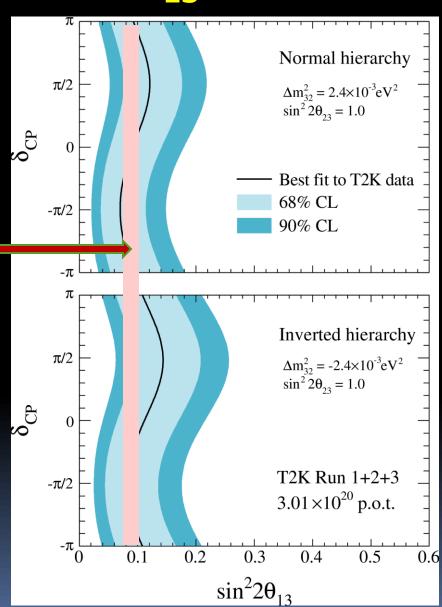
	$\sin^2 2\theta_{13} = 0.1$
3.22 ± 0.43	10.71 ± 1.10
0.18	7.79
1.67	1.56
1.12	1.12
0.16	0.16
	0.18 1.67 1.12

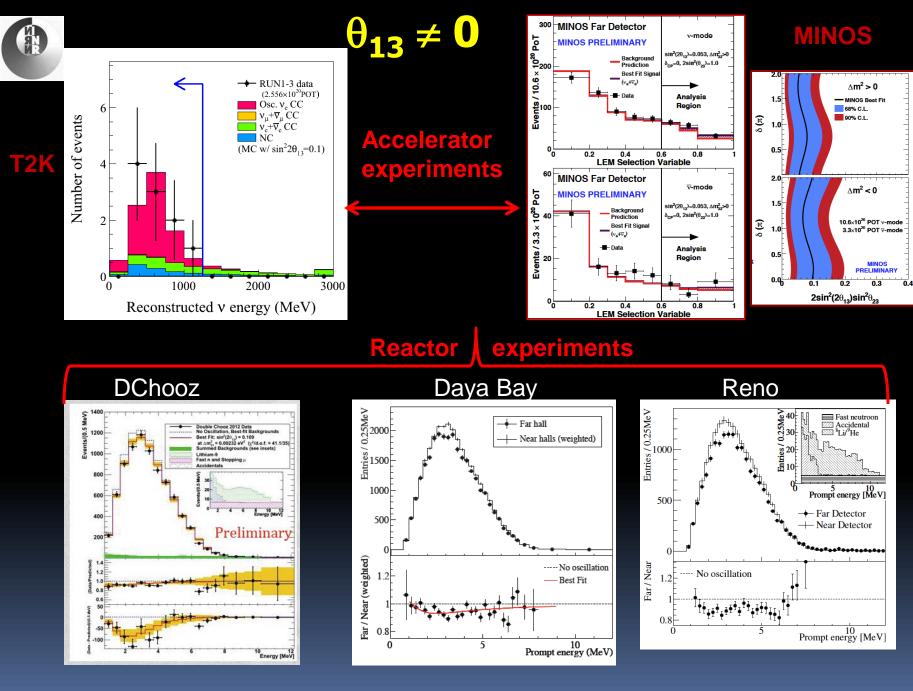
Detected 11 evens Expected 3.3 \pm 0.4(syst) events for θ_{13} =0, NH and δ = 0


3.1 σ observation of $\nu_{\mu} \rightarrow \nu_{e}$

T2K Collaboration, arXiv:1304.0841

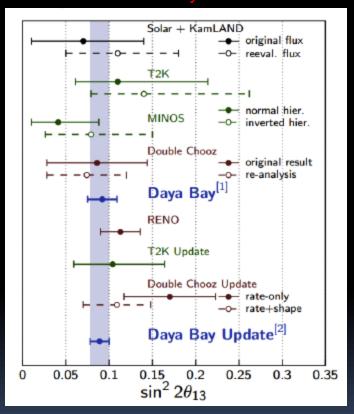
T2K: v_e events


Probability (p-value) to observe 11 events for $\theta_{13} = 0 \rightarrow 0.08\%$

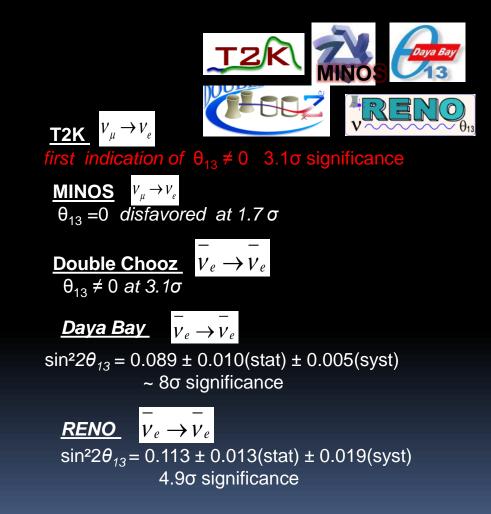

Event Category	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$
Total	3.22 ± 0.43	10.71 ± 1.10
ν _e Signal	0.18	7.79
Intrinsic ve Background	1.67	1.56
v_{μ} Background (mostly π^{o})	1.12	1.12
$\overline{\nu}_{e} + \overline{\nu}_{\mu}$ Background	0.16	0.16

Daya Bay

θ_{13} and δ



θ_{13} : one year story

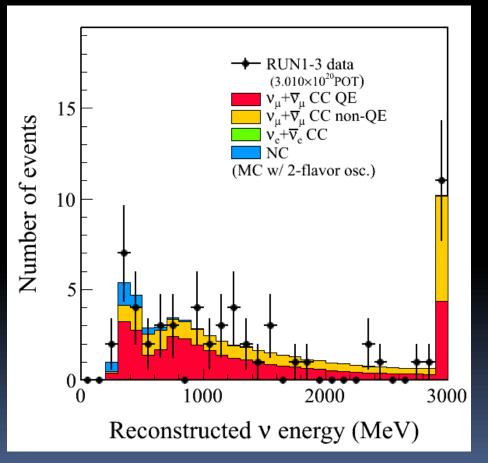

from upper limit to precise measurement!

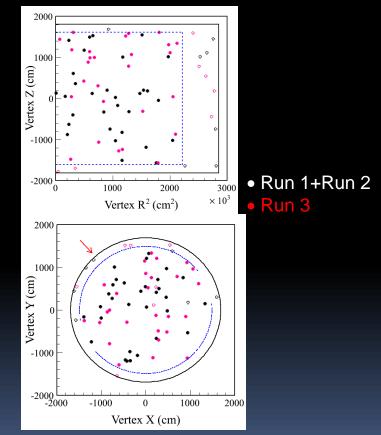
 \triangleright θ_{13} has been well measured by 5 experiments

R.Barbiery ICHEP2012

 $\theta_{13} \approx 9 \pm 1 \text{ deg}$

T2K: v_{μ} disappearance

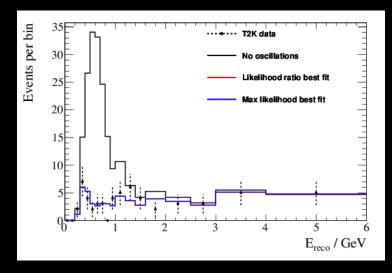


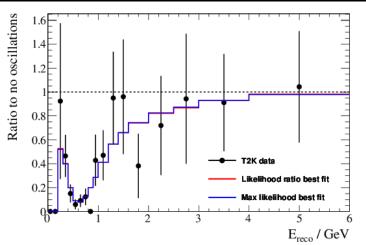

3.1x10²⁰ POT

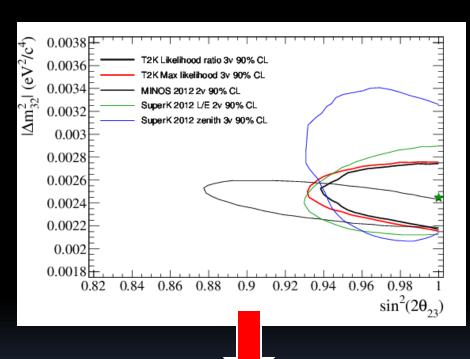
Measurement: 58 events observed

Monte Carlo: 196.2 events no oscillations

Monte Carlo: 57.8 events with oscillations

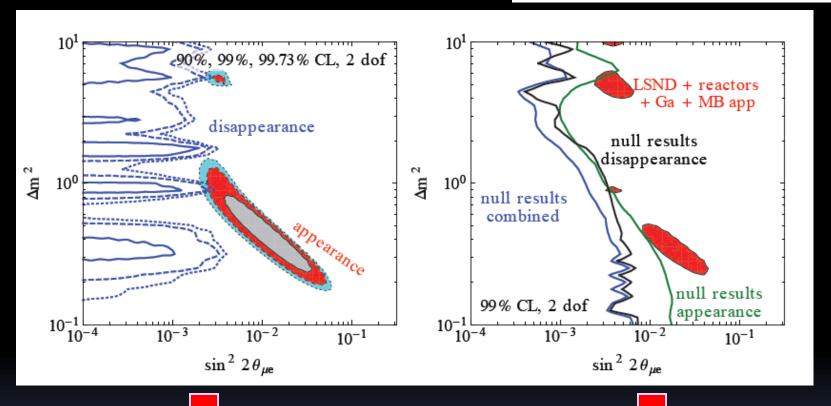





T2K: $\nu_{\mu} \rightarrow \nu_{\mu}$

Maximum Likelihood fit

Best fit results: $\sin^2 2\theta_{23} = 1.00$ $\Delta m_{32}^2 = 2.45 \times 10^{-3} {\rm eV}^2$


T2K obtained best sensitivity to mixing angle θ_{23}

Sterile neutrinos

MiniBooNe/LSND, reactor, Ga anomalies

Kopp, Machado, Maltoni, Schwetz, 1303.3011

strong tension between appearance and disappearance data

tension between signals and negative results

$v_{\mu} \rightarrow v_{e}$ in matter

$$\begin{array}{lll} P(\nu_{\mu} \rightarrow \nu_{e}) & = & 4c_{13}^{2}\overline{s_{13}^{2}}s_{23}^{2}\sin^{2}\frac{\Delta m_{13}^{2}L}{4E_{\nu}} \times \left[1 + \frac{2a}{\Delta m_{13}^{2}}(1 - 2s_{13}^{2})\right] & \longrightarrow & \theta_{13} \\ & + & 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\frac{\Delta m_{23}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{13}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{12}^{2}L}{4E_{\nu}} & \longrightarrow & \text{CP-even} \\ & - & 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\frac{\Delta m_{23}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{13}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{12}^{2}L}{4E_{\nu}} & \longrightarrow & \text{CP-odd} \\ & + & 4s_{12}^{2}c_{13}^{2}(c_{13}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta)\sin^{2}\frac{\Delta m_{12}^{2}L}{4E_{\nu}} & \longrightarrow & \text{Solar} \\ & - & 8c_{13}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E_{\nu}}\frac{aL}{4E_{\nu}}\sin\frac{\Delta m_{13}^{2}L}{4E_{\nu}}(1 - 2s_{13}^{2}), & \longrightarrow & \text{Matter} \end{array}$$

$$s_{ij} = \sin \theta_{ij}$$
 $c_{ij} = \cos \theta_{ij}$ $a[eV^2] = 2\sqrt{2}G_F n_e E_v = 7.6 \times 10^{-5} \rho \left[\frac{g}{cm^3}\right] E_v [GeV]$

$$P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) \qquad a \to -a$$

change sign for NH → IH

$$\theta_{13} \neq 0$$

The strength of CP violation in neutrino oscillations Jarlskog invariant J_{CP}

$$J_{CP} = Im(U_{e1}U_{\mu 2}U_{e2}^*U_{\mu 1}^*) = Im(U_{e2}U_{\mu 3}U_{e3}^*U_{\mu 2}^*) =$$

 $=\cos\theta_{12}\sin\theta_{12}\cos^2\theta_{13}\sin\theta_{13}\cos\theta_{23}\sin\theta_{23}\sin\delta$

all mixing angles $\neq 0 \rightarrow J_{CP} \neq 0$ if $\delta \neq 0$

Quark sector
$$J_{CP} \approx 3 \times 10^{-5}$$

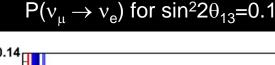
$$\begin{array}{c} \text{Quark sector} \quad \mathbf{J_{CP}} \approx \mathbf{3} \times \mathbf{10^{-5}} \\ \text{Lepton sector} \quad \mathbf{J_{CP}} \sim \mathbf{0.02} \times \mathbf{sin}\delta \\ \end{array} \quad \begin{array}{c} \text{neutrinos} \\ V_{MNS} \sim \begin{pmatrix} 0.8 \ 0.5 \ 0.2 \\ 0.4 \ 0.6 \ 0.7 \\ 0.4 \ 0.6 \ 0.7 \\ \end{pmatrix} \\ V_{CKM} \sim \begin{pmatrix} 1 \ 0.2 \ 0.001 \\ 0.2 \ 1 \ 0.01 \\ 0.001 \ 0.01 \ 1 \\ \end{pmatrix}$$

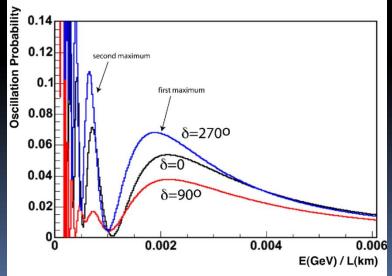
Real chance to test CP violation in neutrino oscillations

CP measurements

If $\theta_{13} \neq 0$ and not too small

measurement of δ in LBL accelerator experiments

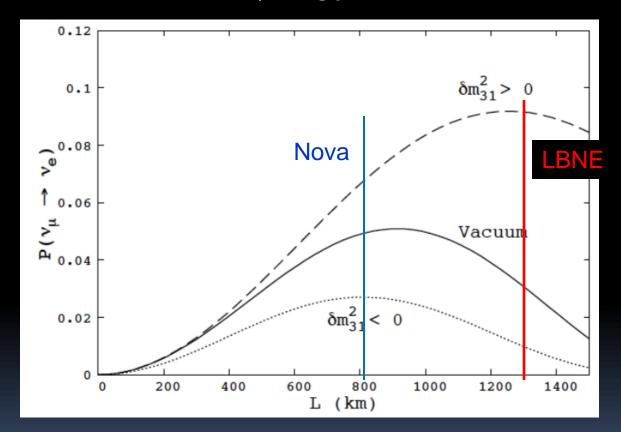

(1) v and anti-v narrow beams tuned to 1st oscillation maximum


$$A_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})} \cong \frac{\Delta m_{12}^{2} L}{4E_{\nu}} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

$$P(\nu_u \to \nu_e) \sim \sin^2 \theta_{13}$$

- neutrino and antineutrino beams
- massive far detector

- wide energy muon neutrino beam
- measurements of two oscillation maxima



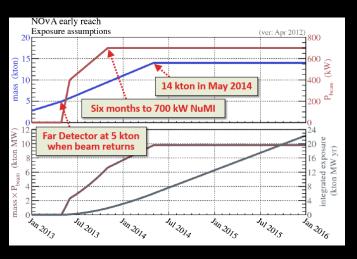
LBL experiments: near and far future

Matter effect in LBL experiments

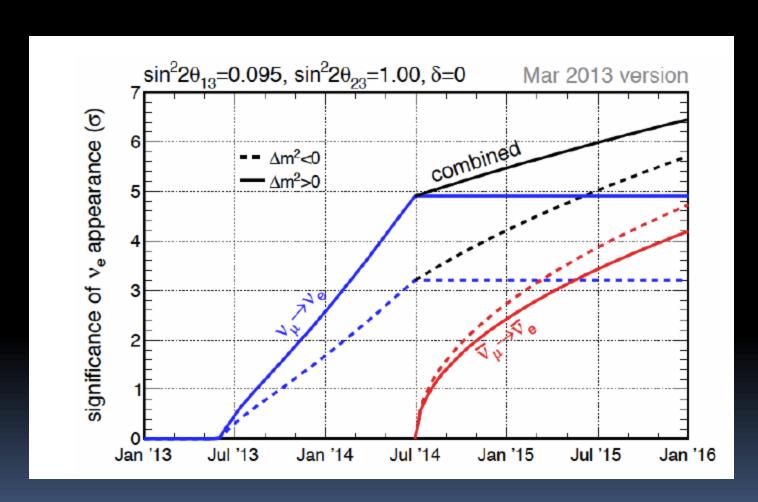
Ev ~ 2 GeV



Nova


Neutrino off-axis narrow-band beam from FNAL L = 810 km, E~2GeV, 700 kW beam power

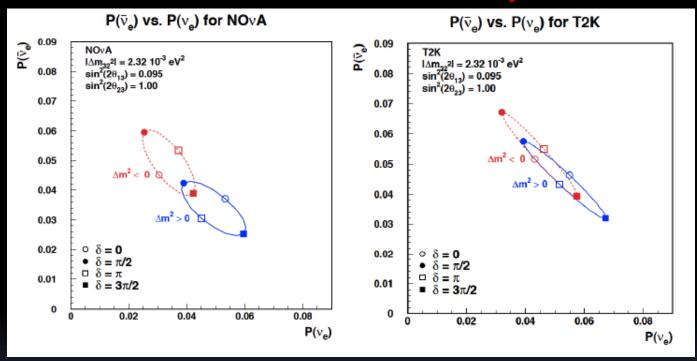
A NOvA cell **NOvA** Detectors To APD Extruded PVC cells filled with 11M liters of scintillator instrumented with Far Detector 14 kton λ-shifting fiber and APDs 928 layers 1560 cm Far detector: 14-kton, fine-grained, low-Z, highly-active tracking calorimeter → 360,000 channels 32-pixel APD → 77% active by mass Near detector: Fiber pairs from 32 cells 4 cm × 6 cm 0.3-kton version of the same → 18,000 channels


R.Patterson, Neutrino 2012

Experiment will start data taking in late 2013

Nova: early sensitivity

M.Messier talk Prague CP violation Colloquium, May 2013



T2K and Nova

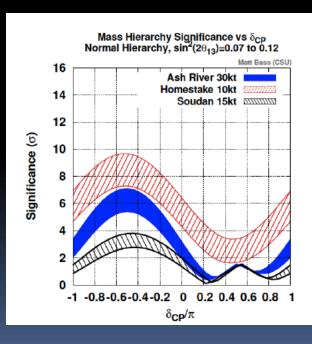
C.Backhouse, NNN Workshop, 4-6 October 2012

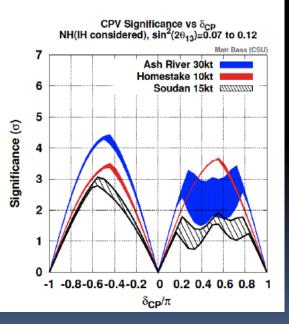
Possible measurement of mass hierarchy and CP violation

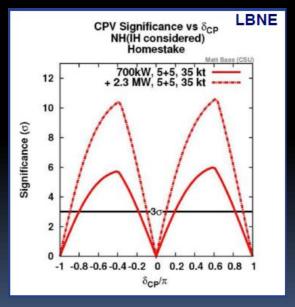
For sin²2θ₁₃=0.1, approximately (at 90%C.L.):

- MH: ≈50% coverage
- CPV: ≈30-40% coverage

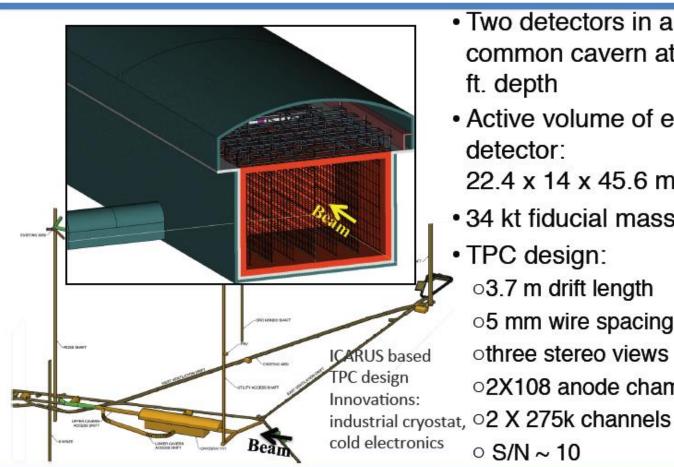
LBNE


The US based LBL project


Neutrino beam from FNAL to Homestake L = 1300 km, Ep=120 GeV, 700 kW NuMI beam, $E_v = 0.5 - 5$ GeV


Far detector 10 kt LAr TPC, on surface No near detector

Sensitivity to MH and CP phase



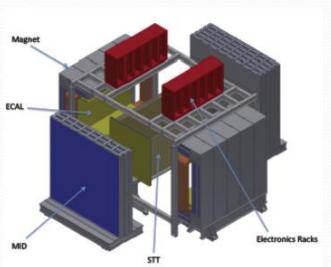
LBNE: Far Detector concept

M.Diwan, talk at ISOUP13

Later phase: 34 kt LAr TPC underground

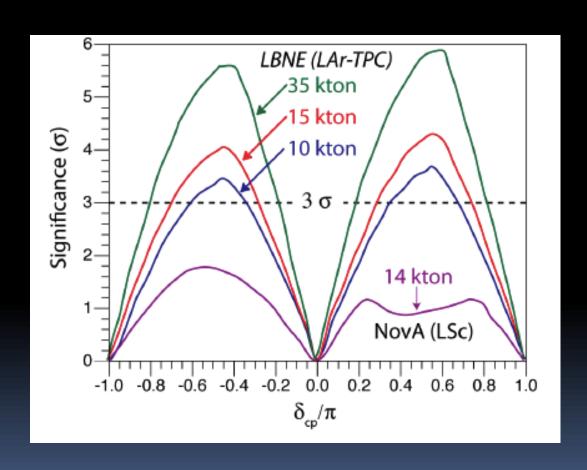


- Two detectors in a common cavern at 4850 ft. depth
- Active volume of each detector: 22.4 x 14 x 45.6 m³
- 34 kt fiducial mass
- TPC design:
 - o3.7 m drift length
 - o5 mm wire spacing
 - othree stereo views
 - •2X108 anode chambers


 - S/N ~ 10

LBNE: Near Detector options

Liquid Argon TPC Tracker (~18 ton LAr)

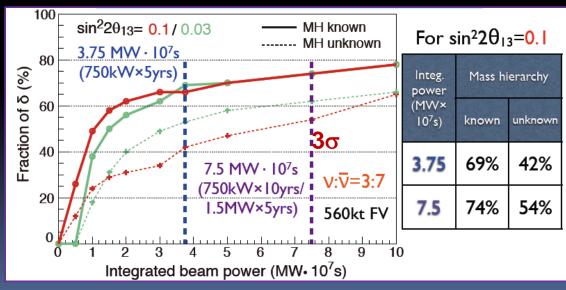

Fine-Grained Tracker (~0.14 ton Ar@140atm)

LBNE: sensitivity to δ

arXiv:1110.6249

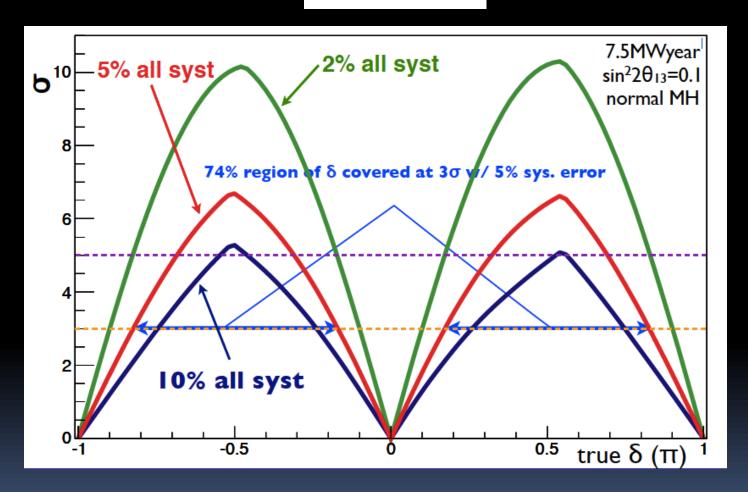
Several options for LBNE far detector


T2HK



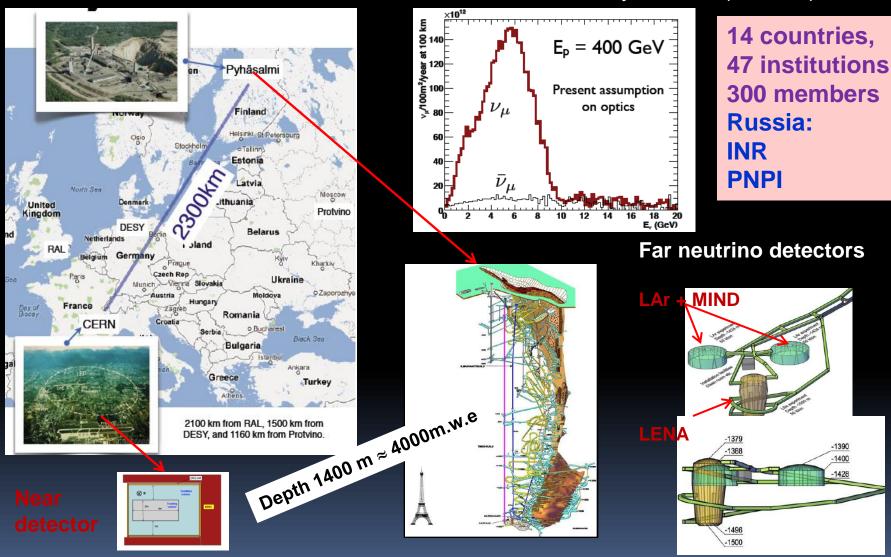
The LBL project in Japan

T.Nakaya, NNN2012

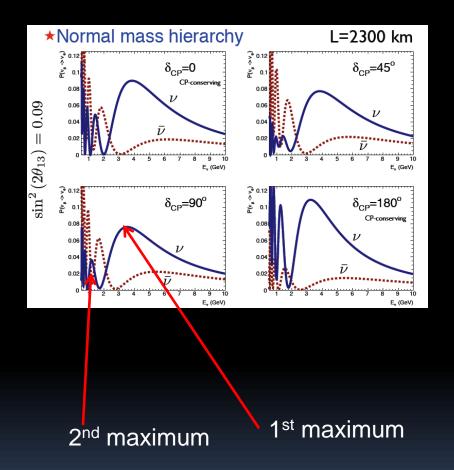


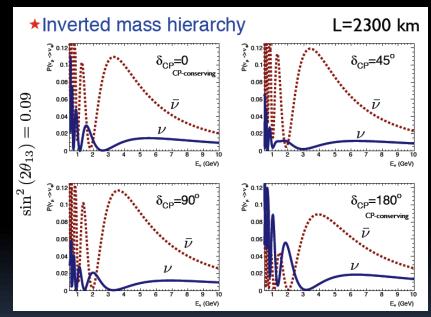
T2HK: CPV discovery potential

MH is known!


High sensitivity to CP phase for systematics < 5%

LAGUNA-LBNO

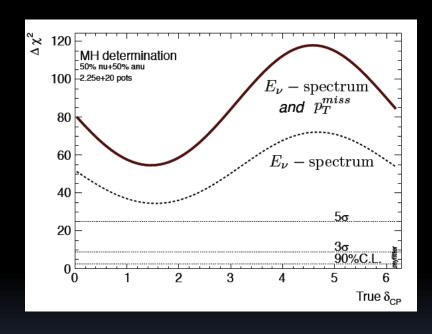

Wide-band neutrino beam from CERN to Pyhasalmi (Finland)

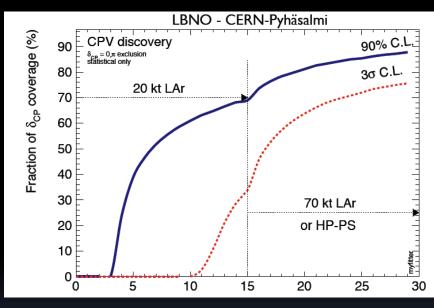

$P(\nu_{\mu} \rightarrow \nu_{e})$

LAGUNA-LBNO

matter effect

- easy to measure MH
- more difficult CP violation

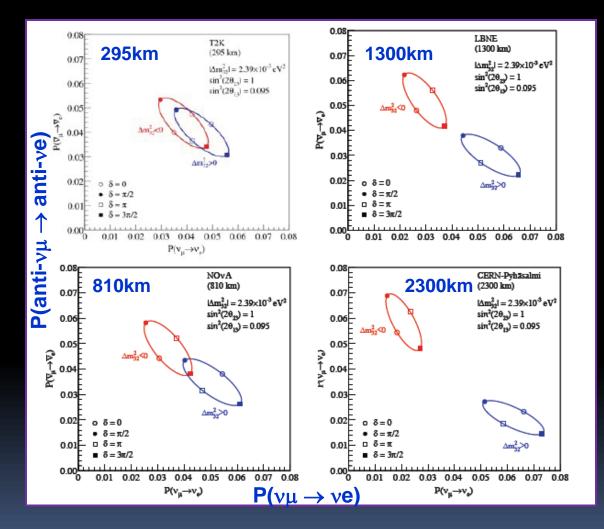



Sensitivity

LAGUNA-LBNO

MH: 100% at $>5\sigma$

CPV: ~60% at 3σ


CERN SPS 400 GeV POT(x 10²⁰)

δ and MH

LBL experiments

S.Wojcicki, NNN2012

Conclusion

- 3 neutrino mixing angles are measured and non-zero
- Large θ_{13} opens door for searching of CP-violation in lepton sector
- Time to start MH and δ measurements