

 June 26-28, 2013, 胞rothino

# )ida- (Energu Collisionts in  


Binituiom of Cheoretical Blyytiry


## WHAT ARE OBSERVABLES IN PARTICLE PHYSICS?

- S-matrix ( W. Heisenberg, 1943)

- "The Lagrangean Field Theory is dead and should be buried, with all the proper honors of course." ( L. Landau, 1960)


## "ELASTIC" OBSERVABLES

$$
t=-p^{* 2}\left(1-\cos \theta^{*}\right)
$$



$$
\begin{gathered}
\sigma_{p+p \rightarrow p+p}=\sigma_{e l} \\
d \sigma_{p+p \rightarrow p+p} / d t
\end{gathered}
$$

## Mesonenerzeugung als Stoßwellenproblem.

Von
W. Heisenberg.

Mit 6 Figuren im Text.
(Eingegangen am 5. Mai 1952.)


## Transuerse Space

## - Moving nucleon's spatial structure

Vacuum flyctuations:
Gluons, quark-antiquarks


## Collision orametry


$b=b_{1}+b_{2}+\beta \quad\left\langle b^{2}\right\rangle=\left\langle b_{1}^{2}\right\rangle+\left\langle b^{2}{ }_{2}\right\rangle+\left\langle\beta^{2}\right\rangle$

## 造保en's balencesize

- $\left\langle b^{2}{ }_{1}\right\rangle=?$
- Often: $\left\langle b_{1}^{2}\right\rangle=2 / 3 r_{p}^{2}$
- $r_{p}=$ "protons charge radius" $\cong 0.88 \mathrm{fm}$

$$
r_{p}^{2}=-6 d F\left(q^{2}\right) /\left.d q^{2}\right|_{q=0}
$$

- $r^{2}{ }_{n}=$ "neutron charge radius" $\cong-0.115 \mathrm{fm}^{2}$
- Correct option:
- $\left\langle b^{2}{ }_{1}\right\rangle=2 / 3\left(r_{p}{ }_{p}-r^{2}{ }_{n}\right) \cong 0.44 \mathrm{fm}^{2}=11 \mathrm{GeV}^{-2}$


## Ouerlaps

- $\left\langle b^{2}\right\rangle=\left\langle b^{2}{ }_{1}\right\rangle+\left\langle b^{2}{ }_{2}\right\rangle+\left\langle\beta^{2}\right\rangle$
- $\left\langle b^{2}\right\rangle_{\text {critical }}=\left\langle b_{1}^{2}\right\rangle+\left\langle b^{2}{ }_{2}\right\rangle=2 \cdot 11 \mathrm{GeV}^{-2}$
- Relation to observables

$$
\mathrm{d} \sigma / \mathrm{dt} \sim \mathrm{e}^{\mathrm{Bt}}
$$

$$
2 B(s) \approx\left\langle b^{2}\right\rangle
$$

- $\mathrm{B}(\mathrm{s})_{\text {critical }} \approx 11 \mathrm{GeV}^{-2}$


## CExperiment


$B=b=11 \mathrm{GeV}^{-2}$ at $\mathrm{S}_{\text {critical }} \approx 110-120 \mathrm{GeV}^{2}$

## 3proton-proton total crosis-section



## 䫒vpothesis:

## - total cross sections start to grow when

valence cores of the colliding hadrons cease

## to overlap.

Cross-check: $\pi p$ collisions
$B_{\text {critical }} \approx 9.1 \mathrm{GeV}^{-2}$
Happens at $p_{\text {lab }} \approx 40-50 \mathbf{G e V}$

## ©experiment



The growth starts at $P_{l a b}=40-45 \mathrm{GeV}$

## 淣here ts "true aspmptotics"?

Natural criterium: B >> B
critical

$$
\begin{gathered}
\mathrm{LHC}(7 \mathrm{TeV}): \\
\mathrm{B}=20 \mathrm{GeV}^{-2}=1.8 \mathrm{~B} \text { critical } \\
\mathrm{B}=5 \mathrm{~B}_{\text {critical }} \\
\text { corresponds to the energy } \\
50-100 \mathrm{TeV}
\end{gathered}
$$

## (1)




## Where are otber minimat?

- Optical analogy ( Fraunhoffer diffraction) $\mathrm{d} / \mathrm{dt} \sim\left\{\mathrm{J}_{1}(\mathrm{Rq}) / \mathrm{q}\right\}^{2}$ $\mathbf{q}^{2}=-\mathbf{t}$
Minimae are situated at (non-zero)zeroes of the Bessel function $x$
1,2,...

$$
\text { LHC: }-\mathrm{t}_{1}=0.5 \mathrm{GeV}^{2}=\mathrm{x}^{2}{ }_{1} / \mathrm{R}^{2}
$$

The next minimum should be at

$$
-\mathrm{t}_{2}=-\mathrm{t}_{1}\left(\mathrm{x}_{2} / \mathrm{x}_{1}\right)^{2} \approx 1.7 \mathrm{GeV}^{2}
$$

ABSENT!

## ITongituoinal



Does the interaction region shrinks in the longitudinal direction?

$$
\begin{gathered}
\left\langle x_{| |}>=<-i d / d p_{| |}>=2 p^{*}<d \varphi / d t>, p^{*} \approx \sqrt{ } / 2\right. \\
T=|T| \exp (i \varphi(s, t)) \\
d \sigma / d t \sim|T|^{2}
\end{gathered}
$$

Can be the scattering phase observed?

## hrage poles

$$
\begin{aligned}
& \mathrm{T}=\left(\mathrm{e}^{-\mathrm{i} \pi / 2} \mathrm{~s} / \mathrm{s}_{0}\right)^{\alpha(\mathrm{t})} \\
& \alpha(\mathrm{t}) \approx \alpha(0)+\alpha^{\prime}(0) \mathrm{t} \\
& <x_{| |}>=\pi \sqrt{ } s / 2 \alpha^{\prime}(0) \ln \left(\mathrm{s} / \mathrm{s}_{0}\right) \approx \\
& 40-50000 \mathrm{fm} \text { at } \sqrt{ } \mathrm{s}=7 \mathrm{TeV}
\end{aligned}
$$

0.5 Angstrem ~ atomic Bohr radius

## Jas there any relation to obsernables?

- Fluctuations
$<\Delta \mathrm{x}_{| |}>=\mathrm{p}^{*} / \sqrt{ }\left\langle\mathrm{t}^{2}\right\rangle-\langle\mathrm{t}\rangle^{2} \approx \sqrt{ } \mathrm{~s} B / 2$
$=7000 \cdot 20 / 2=70000 \mathrm{GeV}^{-1}=14000 \mathrm{fm}$
Longitudinal range grows with energy enormously.


## 

- Can we calculate Regge trajectories perurbatively ?
- Naïve expectation:

$$
\begin{aligned}
\alpha(t) & =\sum g^{2 n} \cdot \alpha_{n}(t) \\
\alpha(0) & =\sum g^{2 n} \cdot \alpha_{n}(0) \\
\alpha^{\prime}(0) & =\sum g^{2 n} \cdot \alpha_{n}^{\prime}(0)
\end{aligned}
$$

Renormalization group:
$\alpha(0)$ does not depend on $g^{2}$

$$
\alpha^{\prime}(0) \sim \exp \left(1 / \beta_{0} g^{2}\right)
$$

## TIME?!

## - Interaction time

 grows with energy proportionally
## CONCLUSION

Tlice remnitw mudy to lue suid in (1-majox

## (Athold artjochlatin)

