

 June 26-28, 2013, 非rothino

High-Energy Collisions in Space-Time Perspective

V. A. Petrov
Division of Theoretical Physics Institute for High Energy Physics

WHAT ARE OBSERVABLES IN PARTICLE PHYSICS?

- S-matrix (W. Heisenberg, 1943)

- "The Lagrangean Field Theory is dead and should be buried, with all the proper honors of course." (L. Landau, 1960)

"ELASTIC" OBSERVABLES

$$
t=-p^{* 2}\left(1-\cos \theta^{*}\right)
$$

$$
\sigma_{p+p \rightarrow p+p}=\sigma_{e l}
$$

$$
d \sigma_{p+p \rightarrow p+p} / d t
$$

Mesonenerzeugung als Stoßwellenproblem.

Von
W. Heisenberg.

Mit 6 Figuren im Text.
(Eingegangen am 5. Mai 1952.)

Transherse Space

- Moving nucleon's spatial structure

Vacuum flyctuations:
Gluons, quark-antiquarks

Collision orametry

$b=b_{1}+b_{2}+\beta \quad\left\langle b^{2}\right\rangle=\left\langle b_{1}^{2}\right\rangle+\left\langle b^{2}{ }_{2}\right\rangle+\left\langle\beta^{2}\right\rangle$

迅udeon's balencesize

- $\left\langle b_{1}^{2}\right\rangle=?$
- Often: $\left\langle b_{1}^{2}\right\rangle=2 / 3 r_{p}^{2}$
- $r_{p}=$ "protons charge radius" $\cong 0.88 \mathrm{fm}$

$$
r_{p}^{2}=-6 d F\left(q^{2}\right) /\left.d q^{2}\right|_{q=0}
$$

- $r^{2}{ }_{n}=$ "neutron charge radius" $\cong-0.115 \mathrm{fm}^{2}$
- Correct option:
- $\left\langle b^{2}{ }_{1}\right\rangle=2 / 3\left(r_{p}{ }_{p}-r_{n}{ }_{n}\right) \cong 0.44 \mathrm{fm}^{2}=11 \mathrm{GeV}^{-2}$

Ouerlaps

- $\left\langle b^{2}\right\rangle=\left\langle b^{2}{ }_{1}\right\rangle+\left\langle b^{2}{ }_{2}\right\rangle+\left\langle\beta^{2}\right\rangle$
- $\left\langle b^{2}\right\rangle_{\text {critical }}=\left\langle b^{2}{ }_{1}\right\rangle+\left\langle b^{2}{ }_{2}\right\rangle=2 \cdot 11 \mathrm{GeV}^{-2}$
- Relation to observables

$$
\mathrm{d} \sigma / \mathrm{dt} \sim \mathrm{e}^{\mathrm{Bt}}
$$

$$
2 B(s) \approx\left\langle b^{2}\right\rangle
$$

- $B(s)_{\text {critical }} \approx 11 \mathrm{GeV}^{-2}$

CExperiment

$B=b=11 \mathrm{GeV}^{-2}$ at $\mathrm{s}_{\text {critical }} \approx 110-120 \mathrm{GeV}^{2}$

解roton-proton total cross-section

䫒vpothesis:

- total cross sections start to grow when

valence cores of the colliding hadrons cease

to overlap.

Cross-check: πp collisions
$\mathrm{B}_{\text {critical }} \approx 9.1 \mathrm{GeV}^{-2}$
Happens at $p_{\text {lab }} \approx 40-50 \mathrm{GeV}$

©experiment

The growth starts at $P_{l a b}=40-45 \mathrm{GeV}$

沮here ts "true aspmptotics"?

Natural criterium: B >> B
critical

$$
\begin{gathered}
\mathrm{LHC}(7 \mathrm{TeV}): \\
\mathrm{B}=20 \mathrm{GeV}^{-2}=1.8 \mathrm{~B} \text { critical }
\end{gathered}
$$

$$
B=5 B_{\text {critical }}
$$

corresponds to the energy

$$
50-100 \mathrm{TeV}
$$

Cross-sections vs Energy

Angular Distribution of Elastically Scattered Protons

Where are other mimimat?

- Optical analogy (Fraunhoffer diffraction) $\mathrm{do} / \mathrm{dt} \sim\left\{\mathrm{J}_{1}(\mathrm{Rq}) / \mathrm{q}\right\}^{2}$ $\mathbf{q}^{2}=-\mathbf{t}$
Minimae are situated at (non-zero)zeroes of the Bessel function x
$1,2, \ldots$

$$
\text { LHC: }-\mathrm{t}_{1}=0.5 \mathrm{GeV}^{2}=\mathrm{x}^{2}{ }_{1} / \mathrm{R}^{2}
$$

The next minimum should be at

$$
-\mathrm{t}_{2}=-\mathrm{t}_{1}\left(\mathrm{x}_{2} / \mathrm{x}_{1}\right)^{2} \approx 1.7 \mathrm{GeV}^{2}
$$

ABSENT!

ITongituoinal

$\sqrt{1}\}, 1,4 \cdot 10^{-13} \mathrm{~cm} \overbrace{}^{-114 \cdot 10^{-13} \sqrt{1-\beta^{2}} \mathrm{~cm}}$

Does the interaction region shrinks in the longitudinal direction?

$$
\begin{gathered}
\left\langle x_{| |}>=<-i d / d p_{| |}>=2 p^{*}<d \varphi / d t>, p^{*} \approx \sqrt{ } s / 2\right. \\
T=|T| \exp (i \varphi(s, t)) \\
d \sigma / d t \sim|T|^{2}
\end{gathered}
$$

Can be the scattering phase observed?

Reque poles

$$
\begin{gathered}
T=\left(e^{-i \pi / 2} \mathrm{~s} / \mathrm{s}_{0}\right)^{\alpha(\mathrm{t})} \\
\alpha(\mathrm{t}) \approx \alpha(0)+\alpha^{\prime}(0) \mathrm{t} \\
<\mathrm{x}_{\| \mid}>=\pi \sqrt{ } \mathrm{s} / 2 \alpha^{\prime}(0) \ln \left(\mathrm{s} / \mathrm{s}_{0}\right) \approx \\
40-50000 \mathrm{fm} \text { at } \sqrt{ } \mathrm{s}=7 \mathrm{TeV}
\end{gathered}
$$

0.5 Angstrem ~ atomic Bohr radius

Jas there any relation to obsernables?

- Fluctuations
$<\Delta \mathrm{x}_{| |}>=\mathrm{p}^{*} / \sqrt{ }\left\langle\mathrm{t}^{2}\right\rangle-\langle\mathrm{t}\rangle^{2} \approx \sqrt{ } \mathrm{~s} B / 2$
$=7000 \cdot 20 / 2=70000 \mathrm{GeV}^{-1}=14000 \mathrm{fm}$
Longitudinal range grows with energy enormously.

- Can we calculate Regge trajectories perurbatively ?
- Naïve expectation:

$$
\begin{aligned}
\alpha(t) & =\sum g^{2 n} \cdot \alpha_{n}(t) \\
\alpha(0) & =\sum g^{2 n} \cdot \alpha_{n}(0) \\
\alpha^{\prime}(0) & =\sum g^{2 n} \cdot \alpha_{n}^{\prime}(0)
\end{aligned}
$$

Renormalization group:
$\alpha(0)$ does not depend on g^{2}

$$
\alpha^{\prime}(0) \sim \exp \left(1 / \beta_{0} g^{2}\right)
$$

TIME?!

- Interaction time

 grows with energy proportionally
CONCLUSION

There remains much to

 be said in C-major (Arnold Schoenberg)