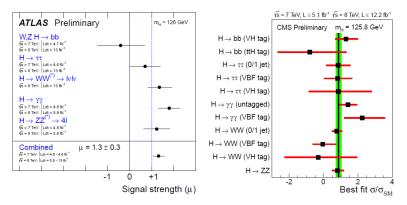
What can the Higgs teach us about UV physics?

XXIX-th International Workshop on High Energy Physics IHEP Protvino

Alexander K Knochel

RWTH Aachen

26.06.2012

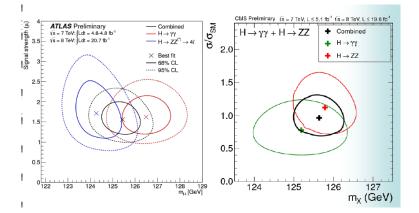

In collaboration with A. Hebecker and T. Weigand (Heidelberg)

The SM-like Higgs at $m_h \sim 125 \,\, { m GeV}$

<□ > < @ > < E > < E > E のQ @

It looks like a SM-like Higgs...

イロト 不得 トイヨト イヨト


э

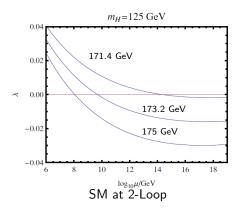
Alternatives?

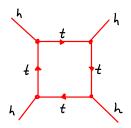
- Spin 2: No reason for couplings to be at all SM-like...
- Spin 1: Landau-Yang
- Spin 0⁻: $\phi F \tilde{F}$, 3σ against at LHC

Details: see Francesco Riva's talk!

LHC Higgs mass determination vs. rates

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

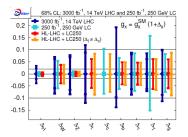

The SM Higgs in the UV

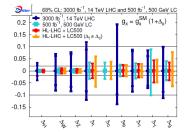

<□ > < @ > < E > < E > E のQ @

The SM Higgs in the UV

Assuming an SM(-like) Higgs, we have now measured λ via $m_h \sim v \sqrt{\lambda}!$

$$16\pi^2 \frac{\partial \lambda}{\partial \log \mu} \sim \lambda (-9g_2^2 - 3g_1^2 + 12y_t^2) + 24\lambda^2 + \frac{3}{4}g_2^4 + \frac{3}{8}(g_1^2 + g_2^2)^2 - 6y_t^4$$

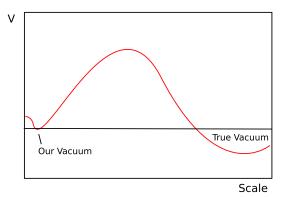

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ


UV coupling is twice as sensitive to Δm_t than to $\Delta m_h!$

- \blacktriangleright Precise measurement of m_t crucial for QG, string pheno, cosmology!
- ▶ If no new physics @ LHC: LC "Top factory" + Higgs factory the future of high energy physics?

ILC TDR '13 (500 fb^{-1}):

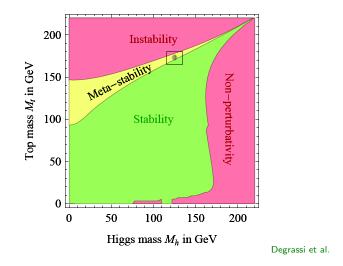
 $\Delta m_t/m_t = 0.02\%$ (34MeV) $\Delta m_h/m_h = 0.03\%$ (35MeV)


◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- 1. Do we end up in the correct vacuum after BB
- 2. Do we have to worry about instability?
- 3. Does this point to new physics at high scales?

4. What about the hierarchy problem?

Ending up in our vacuum


Vacuum stability argument is for T=0 but where does a cooling universe settle? $V_{eff} \sim \lambda(h)h^4$

[Abel, Chu, Jaeckel, Khoze hep-th/0610334]:

Those vacua are preferred which contain more light degrees of freedom... More detailed analysis for our model work in progress

Vacuum Stability

- Special location in the "phase diagram" a hint against nonstandard EWSB at the TeV scale
- Generic in certain well-motivated UV completions (see this talk)

Several phenomena point towards intermediate new physics scales of $\Lambda_{NP}\gtrsim 10^9\dots 10^{14}~GeV$

- The Higgs potential
- Seesaw scale
- Axion DM
- $SU(2) \times U(1)$ unification

Is this a coincidence?

These scales, and our seemingly dangerous place on the $m_t - m_h$ map, may be a direct consequence of the underlying UV completion

New physics near the scale of instability

We interpret our location in the $m_t - m_h$ plane as a hint towards

- SM-like EWSB at the weak scale and
- new physics at a high scale $\Lambda_{NP} \gtrsim \Lambda_{\lambda=0}$.

 \Rightarrow Hierarchy Problem?

$$\delta m_h^2 \propto \Lambda^2$$
 or $\delta m_h^2 \propto M^2(const. + \log \frac{M}{\mu})?$

is 10⁻¹⁰ fine tuning (high scale SUSY) more problematic than 10⁻⁴?
 Λ_{CC} finetuning dominates

Naturalness/fine tuning arguments may have misled us...

What is the origin of $\lambda = 0$ in the UV?

our picture

Shift symmetric High scale SUSY models

[Hebecker, AK, Weigand '12][Ibanez et al. '12][Hebecker, AK, Weigand '13]

- The SM is embedded into a supersymmetric (stringy) theory without treelevel higgs potential
- The observed quartic coupling and weak scale are generated radiatively

The same scale choice can explain $\lambda=$ 0, Axion CDM and provide a viable seesaw scale! [Ibanez et al. '13]

Shift Symmetry

[A. Hebecker, AK, T. Weigand: A Shift Symmetry in the Higgs Sector (arXiv:1204.2551)] The mechanism: a shift symmetry *in the Higgs sector*

 $H_u \longrightarrow H_u + c, \quad H_d \longrightarrow H_d - \overline{c}$

This gives us $\mu(W) = 0$ and $\mathcal{K} = \mathcal{K}(H_u + \overline{H}_d)$,

 $\mathcal{K} = f(S,\overline{S})|H_u + \overline{H}_d|^2 + \dots$

SUSY breaking $F^S \neq 0 \implies$ special relations between soft parameters! see e.g. [Ibáñez, Muñoz]

$$B\mu = |\mu|^2 + m_{H_u}^2 = |\mu|^2 + m_{H_d}^2$$

Realizations known in Heterotic [Lopes Cardoso et al '94][Antoniadis et al. '94][Brignole et al. '97]..., IIA [Hebecker, AK, Weigand '12][Ibanez et al '12], IIB/F-Theory [Hebecker, AK, Weigand '12,'13]

Shift Symmetry

Higgs mass matrix from shift symmetry:

$$V = \left[\begin{array}{c} H_u \\ \overline{H}_d \end{array}\right]^{\dagger} \left[\begin{array}{c} |\mu|^2 + m_H^2 & |\mu|^2 + m_H^2 \\ |\mu|^2 + m_H^2 & |\mu|^2 + m_H^2 \end{array}\right] \left[\begin{array}{c} H_u \\ \overline{H}_d \end{array}\right]$$

SM Higgs from the light (massless) eigenstate $H^{light} = \frac{1}{\sqrt{2}}(H_u - \overline{H}_d)$

$$|lpha|=$$
 45°, tan $_{eta=1}$

Mass eigenstates \sim flat directions of MSSM D-Term potential

$$V \sim (|H_u^0|^2 - |H_d^0|^2)^2$$

The quartic coupling λ_{tree} of the light Higgs vanishes at the "soft" scale

Alternative proposal: exchange symmetry [Ibáñez, Marchesano, Regalado, Valenzuela (arXiv:1206.2655)] High scale radiative corrections to m_h

Radiative corrections

I. Violation of Higgs sector shift/exchange symmetry

$$\mathcal{W} = y_t H_u T_R Q_L$$

(remember: $\tan \beta = 1 \Rightarrow y_t \gg y_b$)

Assume the symmetry to be good at $m_C \gg m_S$ and consider RG evolution of mass matrix. This yields [A. Hebecker, AK, T. Weigand '12]

$$\lambda_{tree}(m_S) = \delta \lambda_{SV}(m_S) \approx \frac{g_2^2 + g_1^2}{8} \left| \frac{6\overline{y_t^2}}{16\pi^2} \log\left(\frac{m_S}{m_C}\right) \right|^2$$

We are lucky: $y_t^4(m_{\mathcal{S}}) \ll 1!$ [Hall, Nomura]

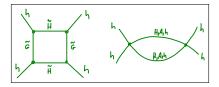
Threshold effects

Naively, λ at m_5 is given by SUSY tree relation - but what is m_5 ?

 m_S is unphysical - need 1-Loop decoupling to determine where $\lambda = \lambda_{tree}$

II. Threshold corrections to λ

$$\delta\lambda_T(m_S) = \frac{3y_t^4}{16\pi^2} \Big[\frac{X_t^2}{m_{\tilde{t}}^2} \Big(1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \Big) + 2\log(\frac{m_{\tilde{t}}}{m_S}) \Big]$$

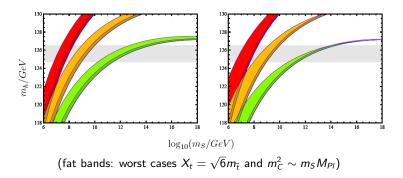

 $X_t \sim A_t - \mu$

[Okada, Yamaguchi, Yanagida '91] ...

We are again lucky that $y_t^4(m_S) \ll 1$

Threshold effects

Furthermore: gauginos, Higgsinos, heavy Higgs sector


$$\delta \lambda_{GH+A}^{LL} pprox rac{\hat{b}_{\lambda}}{16\pi^2} \Big[\log rac{m_{\chi}}{m_S} - rac{1}{4}\log rac{m_A}{m_S}\Big]$$

 $m_\chi=\max(M,\mu),~ ilde{b}_\lambda<0$ see also [Hollik et al. '02][Giudice, Strumia '11]

Effective SUSY scale at leading log:

$$m_{\mathcal{S}}^{eff} = \left[m_{\mathcal{A}}^{-\tilde{b}_{\lambda}/3}m_{\tilde{t}}^{8y_t^4}m_{\chi}^{4\tilde{b}_{\lambda}/3}
ight]^{1/(\tilde{b}_{\lambda}+8y_t^4)}$$

Results for m_h (Thresholds/SV effects)

Various $\delta\lambda$ thresholds and "stop mixing" effects generically cancel in scenarios where $M \sim m_0 \sim \mu$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$\Rightarrow \delta m_h < 2$$
 GeV for $m_S \sim 10^9$ GeV.

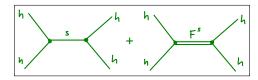
Effects from extended SUSY/MSSM

Effects from extended SUSY

If Higgs originates from higher dimensional bulk or some sector with ${\cal N}=2$ locally such as a non-generic D6 system

$$\mathcal{L} \supset \dots + \frac{1}{2} \vec{P}^2 + g \phi^A \vec{P} \cdot \vec{\sigma}_A{}^B \phi_B^\dagger + \dots$$

where e.g. $\vec{P} \sim (F_{5,6}, D)$


 $\label{eq:alpha} \begin{array}{l} \mbox{The relation} \\ \mbox{``tan}\,\beta=1 \Rightarrow \lambda=0 '' \\ \mbox{relies on SUSY decoupling of } P^1,P^2! \end{array}$

This might be problematic for "non-SUSY model" explanations of $\lambda = 0$ For a discussion of this see [A. Hebecker, AK, T. Weigand '13]

4D effective description as F term:

$$\mathcal{W}\sim\kappa SH_{u}H_{d}+rac{M}{2}S^{2}$$

Below scale M, S and in particular F^s decouple.

(Nice twist: make SUSY gauge sector heavy via Dirac masses and decouple D term (and F term): small λ for arbitrary tan β ! [Fox, Nelson, Weiner '02][J. Unwin '12])

Consider soft mass term

$$\mathcal{L}_{soft} = -m_s^2 s^\dagger s$$

 $m_s \neq 0$: decoupling of F^s is not exact:

$$V_{\Lambda=M} = \kappa^2 \frac{m_s^2}{m_s^2 + M^2} |H_u H_d|^2$$

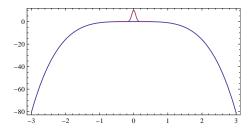
・ロト ・ 一下・ ・ モト・ ・ モト・

ъ

Amusing feature:

negative mass squared results in quartic (not tachyonic!) instability

 $\kappa\sim\sqrt{2}g\sim$ 1, so a small hierarchy


 $-M^2 < m_s^2 < 0, ~~|m_s| \sim M/10$

would bring us to arbitrarily high scales:

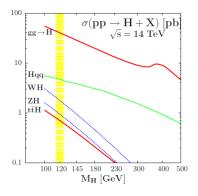
 $m_H = 125 \text{ GeV}$ 0.04 0.02 0.00 ~ -0.02-0.048 10 12 16 18 14 6 $\log_{10}\mu/\text{GeV}$

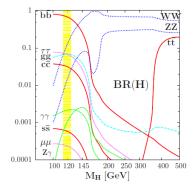
UV completion in unstable regime?

Can we reliably match SM to our UV SUSY model in the $\lambda < 0$ regime?

- $\lambda < 0$ does not introduce a time scale of instability
- Localized vacuum state near h ~ 0 can live long compared to m_S⁻¹ (limited by loop suppressed instabilities and IR cutoff)
- \blacktriangleright This should be sufficient to allow perturbative matching $\lambda \rightarrow \lambda_{SM}$
- ▶ RG running towards IR \rightarrow *h* = 0 quickly becomes local minimum again

Conclusions


- ► After the Discovery: We seem to live on the verge of instability
- ▶ Nature's critical location in the m_t m_h plane can be seen as a hint against nonstandard EWSB
- UV completions with an approximately flat Higgs potential at an intermediate — high SUSY scale can explain the apparent metastability, neutrino masses and Axion CDM
- Several promising approaches in Het. and Type II exist
- ► Work remains to be done wrt. Axion phenomenology, cosmology + inflation
- Effects from the extended sector may place the UV completion in the unstable regime $\lambda < 0$ and/or alleviate the constraints on tan $\beta = 1$


Thank you for your attention!

Higgs properties at future Hadron and Lepton colliders

Table 2.1: Expected performance on the Higgs boson couplings from the LHC and e⁺e[−] colliders, as compiled from the Higgs Factory 2012 workshop. Many studies are quite recent and still ongoing.

Accelerator \rightarrow	LHC	HL-LHC	ILC	Full ILC	CLIC	LEP3, 4 IP	TLEP, 4 IP
Physical Quantity ↓	300 fb ⁻¹ /expt	3000 fb ⁻¹ /expt	250 GeV 250 fb ⁻¹	250+350+ 1000 GeV	350 GeV (500 fb ⁻¹) 1.4 TeV (1.5 ab ⁻¹)	240 GeV 2 ab ⁻¹ (*)	240 GeV 10 ab ⁻¹ 5 yrs (*)
			5 yrs	5yrs each	5 yrs each	5 yrs	350 GeV 1.4 ab ⁻¹ 5 yrs (*)
N _H	1.7×10^7	1.7×10^8	$6\times 10^4\rm ZH$	10 ⁵ ZH 1.4 × 10 ⁵ Hvv	$7.5 \times 10^4 \text{ ZH}$ $4.7 \times 10^5 \text{ Hvv}$	$4 \times 10^5 \mathrm{ZH}$	$2 \times 10^{6} \text{ZH}$ $3.5 \times 10^{4} \text{Hvv}$
m _H (MeV)	100	50	35	35	100	26	7
$\Delta \Gamma_{\rm H} / \Gamma_{\rm H}$			10%	3%	ongoing	4%	1.3%
$\Delta\Gamma_{\rm inv}$ / $\Gamma_{\rm H}$	Indirect (30%?)	Indirect (10% ?)	1.5%	1.0%	ongoing	0.35%	0.15%
$\Delta g_{H\gamma\gamma} / g_{H\gamma\gamma}$	6.5 - 5.1%	5.4 - 1.5%		5%	ongoing	3.4%	1.4%
$\Delta g_{Hgg} / g_{Hgg}$	11 - 5.7%	7.5 - 2.7%	4.5%	2.5%	< 3%	2.2%	0.7%
$\Delta g_{Hww} / g_{Hww}$	5.7 - 2.7%	4.5 - 1.0%	4.3%	1%	~1%	1.5%	0.25%
$\Delta g_{HZZ} / g_{HZZ}$	5.7 - 2.7%	4.5 - 1.0%	1.3%	1.5%	~1%	0.65%	0.2%
$\Delta g_{HHH} / g_{HHH}$		< 30% (2 expts)		~30%	~22% (~11% at 3 TeV)		
$\Delta g_{H\mu\mu} / g_{H\mu\mu}$	< 30%	< 10%			10%	14%	7%
$\Delta g_{H\tau\tau} / g_{H\tau\tau}$	8.5 - 5.1%	5.4 - 2.0%	3.5%	2.5%	≤ 3%	1.5%	0.4%
$\Delta g_{Hcc} / g_{Hcc}$			3.7%	2%	2%	2.0%	0.65%
$\Delta g_{Hbb} / g_{Hbb}$	15 - 6.9%	11	1.4%	1%	1%	0.7%	0.22%
Δg _{Htt} / g _{Htt}	14 - 8.7%	8.0 - 3.9%		5%	3%		30%

