Top quark physics results from LHC

Cristina Ferro

NCU Taiwan

26/06/2013

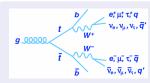
Outline

- Introduction
- Cross section measurements
 - ullet t dileptonic and semileptonic channels
 - Single-top t-channel
 - ullet Measurement of Vector Boson Production associated with $t\bar{t}$ pairs at 7 TeV
 - \bullet Measurement of the cross section ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$
- Top quark Properties
 - W polarization
 - Top quark Mass
 - Top anti-top mass difference
- Conclusions

Introduction

The Top physics is one of the main pillars of the physics program at the LHC.

- The top quark is the heaviest particle of the SM (173.20 \pm 0.51 (stat) \pm 0.71 (syst) GeV, CDF Conf. note 10976, D0 Conf note 6381) \rightarrow Yukawa coupling to the Higgs field close to 1 \rightarrow Most interesting object to test the SM.
- Top mass: fundamental parameter of SM and BSM Physics!
- Decay time of $O(10^{-24}$ s) shorter than the hadronization time scale \to a unique possibility to study a "bare" quark free from hadronization effects.
- ullet The measurement of the ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$ is an important ingredient to understand if the Higgs particle is compatible with the SM or not.
- The measurement of the W helicity fraction as well as the measurement of the top anti-top mass difference can also suggest the presence of new physics.


3 / 31

C. Ferro (NCU) Cristina Ferro Particle & Astro Protvino

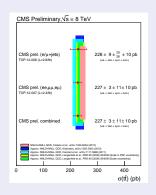
Cross section measurements

- Cross section measurements
 - Dileptonic and Semileptonic channel. CMS-PAS-TOP-12-007, CMS-PAS-TOP-12-006, CMS-PAS-TOP-12-011, ATLAS-CONF-2012-149

$t ar{t}$ production cross section in the dilepton/semileptonic channel ($\sqrt{s}=8$ TeV CMS)

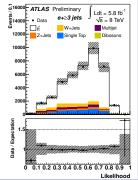
- $e^-\mu^-$ +jets channel
 - ► Template fit to M_{lb}
 - QCD background shape from data
 - Systematics: b-tagging, jet energy scale.
- Dileptonic channel
 - Cut based analysis
 - High purity, High
 - Systematics: lepton ID, jet energy scale.

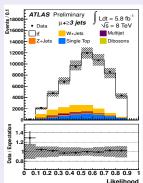
OP-12-006


1 isolated high- $p_{\rm T}~\mu/{\rm e},$ veto on al leptons, \geq 4 jets, and \geq 1 jet

ultijet backgr**ol(i)jet**) shape and ation from data

ikelihood fit of the invariant masifet and the lepton $\left(M_{lb}\right)$


eck: uses the mass of the combination with the highest p^{\prime}


with anaray

$t ar{t}$ production cross section in the semileptonic channel ($\sqrt{s}=8$ TeV ATLAS)

- Number of singal events obtained from data with a likelihood discriminant template fit.
 (Likelihood function obtained from projective likelihood method defined in the TMVA)
- Multijet bkg: matrix method form μ + jets channel, Jet-electron method (using simulated di-jet sample) for e+jets channel.
- Systematics: Jet and MET reconstruction, MC modeling of the signal.
- ullet Result: $\sigma_{tar{t}}$ = 241 \pm 2 (stat.) \pm 31 (syst.) \pm 9 (lumi.) pb.

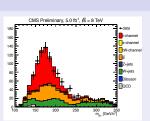
Cross section measurements

- Cross section measurement
 - Dileptonic and Semileptonic channel. CMS-PAS-TOP-12-007, CMS-PAS-TOP-12-006, ATLAS-CONF-2012-149
 - Single-top t-channel. CMS-PAS-TOP-12-011, ATLAS-CONF-2012-132

7 / 31

C. Ferro (NCU) Cristina Ferro Particle & Astro Protvino

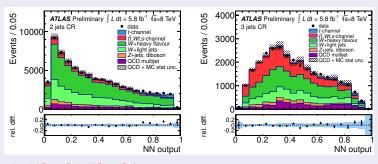
Measurement of single-top t-channel cross section (CMS)


single-top production mechanisms

- The t-channel single-top process is expected to be the dominant one with a $\sigma_t^{th} = 87.2^{+0.7}_{-0.7}(scale)^{+1.5}_{-1.7}(PDF)$ pb at 8 TeV (for a $m_t = 173 \text{ GeV}/c^2$).
- Probe for new physics (FCNC).

CMS analysis at 8 TeV

- Leptonic channel.
- Signal extraction: maximum likelihood fit to the $|\eta_i|$ distribution.
- Main bkg: from data in CRs.


- $\qquad \qquad \mathbf{\textit{M}}_{\textit{lb}\nu} \text{ distribution applying} \\ |\eta_j| > 2.0$
 - $\sigma_t^{t-ch} = 80.1 \pm 5.7 (stat) \pm 11.0 (syst) \pm 4.0 (lumi) pb.$

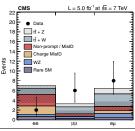
8 / 31

C. Ferro (NCU) Cristina Ferro Particle & Astro Protvino

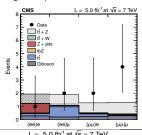
Measurement of single-top t-channel cross section (ATLAS)

- Leptonic channel.
- Multivariate analysis
- Signal extraction: maximum likelihood fit to the NNoutput distribution.
- Two separate analyses: 2 or 3 jets.
- Signal region: 1 b-tagged jet
- Control region: no b-tagged jets
- Systematics: JES, b-tagging, ISR/FSR.

 $\sigma_{t\bar{t}} = 95 \pm 2(stat.) \pm 18(syst.)$ pb

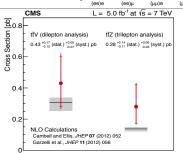

Cristina Ferro

Cross section measurements


- Cross section measurements
 - Dileptonic and Semileptonic channel. CMS-PAS-TOP-12-007, CMS-PAS-TOP-12-006, ATLAS-CONF-2012-149
 - ► Single-top t-channel. CMS-PAS-TOP-12-011, ATLAS-CONF-2012-132
 - Measurement of Vector Boson Production associated with $t\bar{t}$ pairs at 7 TeV. Phys. Rev. Lett. 110 (2013) 172002

Measurement of Vector Boson Production associated with $t\bar{t}$ pairs

- Key ingredient to test the SM validity. First measurement of ttZ coupling.
- Trilepton: $t\overline{t} + Z$ events



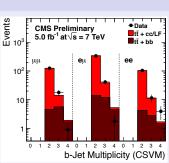
• Same-sign dilepton: $t\overline{t} + V$ events

- Trilepton: $\sigma_{ttZ} = 0.30^{+0.14}_{-0.11}(stat)^{+0.04}_{-0.02}(syst)$
- Same-Sign dilepton :

$$\sigma_{ttV} = 0.45^{+0.17}_{-0.15}(stat)^{+0.06}_{-0.05}(syst)$$

Cross section measurements

- Cross section measurements
 - Dileptonic and Semileptonic channel. CMS-PAS-TOP-12-007, CMS-PAS-TOP-12-006, ATLAS-CONF-2012-149
 - Single-top t-channel. CMS-PAS-TOP-12-011, ATLAS-CONF-2012-132
 - Measurement of Vector Boson Production associated with $t\bar{t}$ pairs at 7 TeV. CERN preprint: CERN-PH-EP-2013-033
 - Measurement of the cross section ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}ii}$. CMS-PAS-TOP-12-024

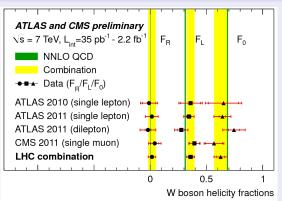

Measurement of the cross section ratio R= $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$

Motivations

- $t\bar{t}H$ is one of the most promising channels for the direct measurement of the top quark Yukawa coupling with the H boson.
- ullet If the new observed particle is the SM Higgs boson o it decays mainly into $bar{b}$ in the final state.
- Because of the irreducible non-resonant background from the production of $t\bar{t}$ pair in association with $b\bar{b}$, the $t\bar{t}b\bar{b}$ final state has not yet been observed.
- ullet For the first time we measured the cross section ratio $\sigma_{t ar{t} b ar{b}}/\sigma_{t ar{t} j j}.$

Analysis

- \bullet $t\bar{t}$ decaying dileptonically.
- Fit to b-tagging jet-multiplicity to extract signal from bkg.
- Systematics: fake b-fraction
- $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj} = 3.6 \pm 1.1(stat) \pm 0.9(syst)\%$.
- MC predictions: 1.2%
 MADGRAPH, 1.3% POWHEG

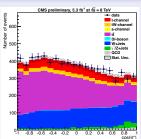

Top quark Properties

- Top quark Properties
 - W polarization

W Polarization

- θ^* disribution (angle between the p(lepton) in W rest frame and p(W).)
- Test V-A structure of tWb-vertex, possible BSM contribution modify elicity fractions: F₀, F_L, F_R.

Combined results ATLAS+CMS using 2010 and 2011 data



W polarization with 2012 data at 8 TeV (CMS)

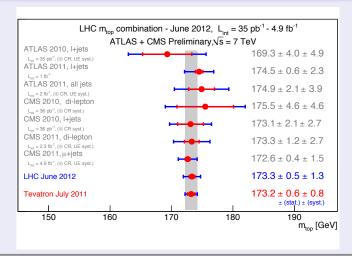
Dilepton channel

	£ 800	W nord	E Sization	-	0.000	0
	Sin	leTop TN	k enop maliza	tion	0.003	:0
	700	- 17	EF.		0.000	0
		esults Pil	etaip		0.040	0
n	5 600	of the sy	DF Botic B	M	contr	iΒ
-	ion.	T	ötäl		0.040	σ
nmary of the systematic in the effect						
conclusions						
2	tion.	MA WALL	bosons in t	he dil	entonic	ŧŦ.c
ζ	ions	at a centre	sons in the e-of-mass e	nerev	of $\sqrt{s} =$	7.1
h	tioia	sitheo YV4.	6 oston Sip #	he d iil	eptonic	9
s	ions	tai <mark>ce</mark> ntre	r-efimasse	pergy	of \sqrt{s}	$\sqrt{2}$

Single-top t-ch

$$F_L = 0.288 \pm 0.035(\text{stat}) \pm 0.040(\text{syst})$$

 $F_0 = 0.698 \pm 0.057(\text{stat}) \pm 0.063(\text{syst})$
 $F_R = 0.014 \pm 0.027(\text{stat}) \pm 0.042(\text{syst})$


$$\begin{split} F_L &= 0.293 \pm 0.069(\text{stat.}) \pm 0.030(\text{syst.}), \\ F_0 &= 0.713 \pm 0.114(\text{stat.}) \pm 0.023(\text{syst.}), \\ F_R &= -0.006 \pm 0.057(\text{stat.}) \pm 0.027(\text{syst.}). \end{split}$$

Top quark Properties

- Top quark Properties
 - ▶ W polarization
 - Top quark mass: JHEP 12(2012) 105 [arXiv:1209.2319], ATLAS-CONF-2013-046

Top quark mass LHC Combination

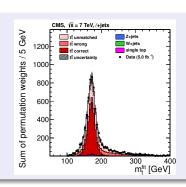
CMS PAS TOP-12-001, ATLAS-CONF-2012-095

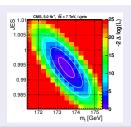
Direct Mass: Lepton+ jets. (CMS)

Signature

- ullet 1 e^\pm or 1 μ^\pm
- 4 jets, 2-btags

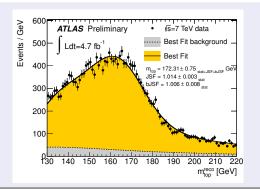
Analysis ("2D-ideogram")


- Reconstruct top mass from kinematic fit $(P_{\it gof})$
- 2D max. likelihood fit of the mass and JES using W mass costraint.
- weight each fit solution by P_{gof} to reduce impact of events without correct permutations.


Systematics

• main one: b-jet energy scale (0.61).

Result


• $m_{top} = 173.5 \pm 0.4_{stat+JES} \pm 1.0_{syst} \text{GeV}$

Direct Mass: ATLAS

- 3D template analysis in lepton+jets channel. 2011 data at 7TeV have been used.
 - it allows to reduce drastically the JES and bJES uncertainty
- Top mass extracted using an unbinned likelihood fit to data
- insitu determination of the JSF and bJSF
- $m_{top} = 172.31 \pm 0.75(stat + JSF + bJSF) \pm 1.35(syst)$ GeV

Top quark Properties

- Top quark Properties
 - ▶ W polarization
 - ► Top quark mass
 - ► Top anti-top mass difference: CMS-PAS-TOP-12-031

Measurement of the top anti-top mass difference in pp collisions at 8 TeV (CMS)

Motivation

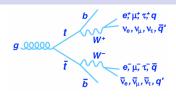
- CPT invariance implies equality of particle and anti-particle masses.
- Several extensions of the SM include CPT violation effects.
- The top quark is unique for this kind of CPT test in the quark sector for two main reasons:
 - it decays before hadronization.
 - large dataset due to the large top quark cross section production at LHC

analysis

- $t\bar{t}$ semileptonic channel.
- Idiogram method used to reconstruct the m_t .

Final Results

+ jets
$$m_t = -230 \pm 264 \text{ (stat.) MeV}$$
, The results for Δm_t are compatible with the expectation from the hypothesis of CPT symmetry.


combined $m_t = -325 \pm 294 \text{ (stat.) MeV}$, $m_t = -325 \pm 294 \text{ (stat.) MeV}$, $m_t = -272 \pm 196 \text{ (stat.)} \pm 122 \text{ (syst.) MeV}$.

This is more precise by at least a factor two than any of the previous public results.

Conclusions

- Top quark physics: Key to QCD, electro-weak and New Physics
- A wealth of measurements available from ATLAS and CMS (7 and 8 TeV).
- For the first time the ratio $R = \sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$ and the cross section of the top pairs produced in association with Vector bosons have been measured.
- Top mass measured by both collaboration: Tevatron precison already reached. Altogether LHC has a number of measurements that explore top quark mass systematics in a sophisticated way, aiming to go beyond the present systematic limitation.
- Many measurements have not been presented: CP violation, FCNC, differential cross, spin correlation, charge...
- Still no hints of new physics \rightarrow we are preparing the new data taking at 14 TeV.

$t\bar{t}$ production cross section in the dilepton channel (pp collisions at $\sqrt{s}=8$ TeV) (I)

- Total integrated luminosity of $2.4 fb^{-1}$.
- data triggered by requiring one or two leptons (e $^-, \mu^-$).

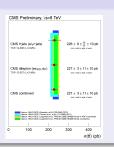
Offline selection

- At least one good Primary Vertex (PV).
- At least one pair of **oppositely charged** and **isolated leptons**. $\mu^-(e^-)$: $p_T > 20$ GeV, $|\eta| < 2.4(2.5)$.
- At least two jets with $p_T>30$ GeV, $|\eta|<2.5$ are required. No overlap with selected $\mu^-(e^-)$. At least one jet has to be b-tagged.

Background estimation

- Dilepton candidates with $M_{II} < 20$ GeV are removed \rightarrow to remove heavy flavour resonances and Drell-Yen processes.
- M_{II} have to be outside a ± 15 GeV window centered at the Z mass.
- E_T^{miss} >40 GeV is required to reduce the QCD background contribution.
- The residual contribution of QCD and Drell-Yan processes are estimated on data.

C. Ferro (NCU)


 $t\bar{t}$ production cross section in the dilepton channel (pp collisions at $\sqrt{s}=8$ TeV) (II)

Cross section extraction

$$\sigma_{t\bar{t}} = \frac{N - N_B}{A*L}$$

Cut based analysis.
 N is the number of events observed in data.
 N_B is the number of estimated background events.

- The measurements is performed in the three channels separately (ee, $\mu\mu$, $e\mu$) and then combined.
- Theoretical prediction at 8 TeV: 225.2 pb.

Measurements of $t\bar{t}$ cross section production

- ullet Measurements of $tar{t}$ cross section production
 - Dileptonic channel
 - Semileptonic channel. CMS-TOP-PAS-12-006

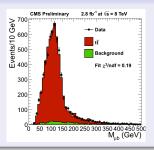
26 / 31

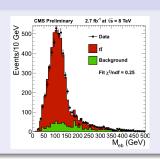
C. Ferro (NCU) Cristina Ferro Particle & Astro Protvino

 $t\bar{t}$ production cross section in the e^-/ $\mu+{\rm jets}$ channel (pp collisions at $\sqrt{s}=8$ TeV) (I)

 data are collected with a single lepton plus three-jets trigger. Total integrated luminosity of 2.8fb⁻¹.

offline selection

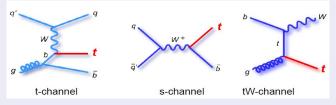

- At least one good PV.
- Only one isolated lepton compatible with the reconstructed PV. $\mu^-(e^-)$: $p_T > 26(30)$ GeV, $|\eta| < 2.1(2.5)$. (to reject Z and top quark pairs decaying into dileptons.)
- At least four jets with p_T >45, 45, 35, 35 GeV are required. At least one of them has to be b-tagged.


Background estimation and analysis strategy

- The main QCD background process is modeled on data. The other smaller contributions are taken from simulation.
- The number of signal events is extracted with a binned maximum likelihood fit of templates describing signal and bgk processes to the data sample passing the final selection. The M_{Ib} distribution has been fitted.

 $t\bar{t}$ production cross section in the e^-/ $\mu+{\rm jets}$ channel (pp collisions at $\sqrt{s}=8$ TeV) (II)

Cross section extraction


Final results

$$\begin{split} &\sigma_{\rm t\bar t}(\mu+jets) = 229.9 \pm 11.1 \; ({\rm stat.})^{+27.6}_{-29.0} \; ({\rm syst.}) \pm 10.1 \; ({\rm lum.}) \; {\rm pb}, \\ &\sigma_{\rm t\bar t}(e+jets) = 227.3 \pm 12.2 \; ({\rm stat.})^{+35.5}_{-30.0} \; ({\rm syst.}) \pm 10.0 \; ({\rm lum.}) \; {\rm pb}, \\ &\sigma_{\rm t\bar t}(combined) = 228.4 \pm 9.0 \; ({\rm stat.})^{+29.0}_{-26.0} \; ({\rm syst.}) \pm 10.0 \; ({\rm lum.}) \; {\rm pb}, \end{split}$$

4 D > 4 A > 4 B > 4 B > B 9 9 9

Measurement of single-top t-channel cross section (I)

single-top production mechanisms

- The t-channel single-top process is expected to be the dominant one with a $\sigma_t^{th} = 87.2^{+2.1}_{-0.7}(scale)^{+1.5}_{-1.7}(PDF)$ pb at 8 TeV (for a $m_t = 173 \text{ GeV}/c^2$).
- Data collected with a single Muon trigger. Total integrated luminosity of $5fb^{-1}$.

Offline selection

- Only one isolated muon with $p_T > 26$ and $|\eta| < 2.1$. Veto on the presence of electrons.
- The selected muon has to be compatible with the mass of the W $(m_T^W > 50 \text{ GeV}/c^2)$
- b-tagging is applied to reduce the huge background of W+jets events.
- ullet A signal region (SR) is define by requiring two jets with $p_T > 40$ and 1 of these b-tagged.
- Control regions (CRs): if more than 2 jets or more than 1 b-tagged jet are present.

C. Ferro (NCU) Cristina Ferro Particle & Astro Protvino

Measurement of Vector Boson Production associated with $t\bar{t}$ pairs (I)

- This measurement is a key ingredient to test the SM validity. Two analysis separately:
 - lacktriangle exclusive search of trilepton events produced in $t\overline{t}+Z$ decays
 - inclusive search for same sign dilepton events produced in $t\bar{t} + V$ decays (V=W or Z).

Dataset and trigger

ullet Data are collected with a dilepton trigger. Total integrated luminosity: 4.98 fb $^{-1}$, (7 TeV).

Trilepton analysis: offline selection

- two opposite-charge, same-flavor leptons with $p_T > 20$ GeV and $81 < m_{\parallel} < 101$ GeV
- \bullet transverse momentum of the Z > 35 GeV
- third lepton with $p_T > 10 \text{ GeV}$
- at least three jets with $p_T > 20$ GeV and $|\eta| < 2.4$, two of them b-tagged.
- $H_T > 120$ GeV. H_T is the scalar sum of all jets in the event with $p_T > 20$ and $|\eta| < 2.4$.

Same-sign dilepton analysis: offline selection

- two same charged and isolated leptons with $p_{T1,T2} > 55$, 30 GeV
- at least three jets with $p_T > 20$ GeV. At least one b-tagged.
- $H_T > 100 \text{ GeV}$

C. Ferro (NCU) Cristina Ferro Particle & Astro Protvino

Measurement of Vector Boson Production associated with $t\bar{t}$ pairs (II)

Background estimation


• for both analysis the main background processes, coming from $t\bar{t}$ production, Z +hard jets, and diboson productions, are modeled on data applying a specific selection.

Cristina Ferro

Final results

- Trilepton analysis: $\sigma_{ttZ} = 0.30^{+0.14}_{-0.11}(stat)^{+0.04}_{-0.02}(syst)$
- Same-Sign dilepton analysis: $\sigma_{ttV} = 0.45^{+0.17}_{-0.15}(stat)^{+0.06}_{-0.05}(syst)$

Combination

- Measurement of the $t\bar{t}V$ production cross section: the cross section from the trilepton channel (right), from the same sign dilepton channel (left) are compared to the NLO calculation (black line).
- Internal error bars represent the statistical component of the uncertainty.

C. Ferro (NCU)