Top quark physics results from LHC

Cristina Ferro

NCU Taiwan

26/06/2013

C. Ferro (NCU

э

イロン イロン イヨン イヨン

Outline

Introduction

2 Cross section measurements

- $t\bar{t}$ dileptonic and semileptonic channels
- Single-top t-channel
- Measurement of Vector Boson Production associated with $t\bar{t}$ pairs at 7 TeV
- Measurement of the cross section ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$

Top quark Properties

- W polarization
- Top quark Mass
- Top anti-top mass difference

4 Conclusions

• • • • • • • • • • • • •

The Top physics is one of the main pillars of the physics program at the LHC.

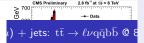
- The top quark is the heaviest particle of the SM (173.20 \pm 0.51 (stat) \pm 0.71 (syst) GeV, CDF Conf. note 10976, D0 Conf note 6381) \rightarrow Yukawa coupling to the Higgs field close to 1 \rightarrow Most interesting object to test the SM.
- Top mass: fundamental parameter of SM and BSM Physics!
- Decay time of O(10⁻²⁴ s) shorter than the hadronization time scale \rightarrow a unique possibility to study a "bare" quark free from hadronization effects.
- The measurement of the ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}j\bar{j}}$ is an important ingredient to understand if the Higgs particle is compatible with the SM or not.
- The measurement of the W helicity fraction as well as the measurement of the top anti-top mass difference can also suggest the presence of new physics.

(a)

• Cross section measurements

Dileptonic and Semileptonic channel. CMS-TOP-PAS-12-007, CMS-TOP-PAS-006, CMS-PAS-TOP-12-011, ATLAS-CONF-2012-149

イロト イヨト イヨト イヨト


 $t\bar{t}$ production cross section in the dilepton/semileptonic channel ($\sqrt{s}=8$ TeV CMS)

• $e^{-}\mu^{-}$ +jets channel

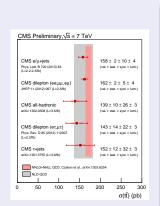
 Template fit to M_{lb}
 QCD background shape from data
 Systematics:
 b-tagging, jet energy scale.

• Dileptonic channel

- Cut based analysis
- High purity, High statistics
- Systematics: lepton ID, jet energy scale.

First measurement in the lept

OP-12-006


1 isolated high-p_T $\mu/{\rm e},$ veto on al leptons, \geq 4 jets, and \geq 1 l jet

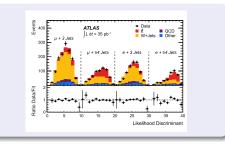
ultijet backgr**ol()jet**)shape and ation from data

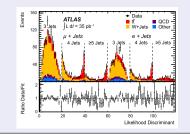
ikelihood fit of the invariant mas -jet and the lepton (M_{lb})

eck: uses the mass of the combination with the highest $p^{\rm c}$

with anarav

(日) (同) (日) (日)

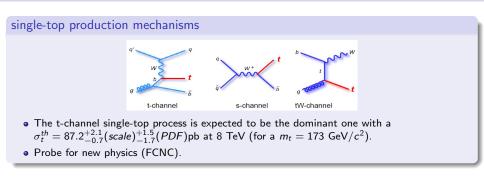

 $t\bar{t}$ production cross section in the semileptonic channel ($\sqrt{s}=7~{\rm TeV}$ ATLAS)


- $e^{-}\mu^{-}$ +jets channel
- two separate analyses:
 - tagged analysis
 - untagged analysis
- Multivariate analysis to separate signal from bkg.
- Fit to the likelihood output discriminant to extract signal.
- Systematics: JES, bkg modeling ISR/FSR.
- Untagged:

 $\sigma_{t\overline{t}} = 173 \pm 17(\textit{stat})^{+18}_{-16}(\textit{syst}) \pm 6(\textit{lumi})$ pb

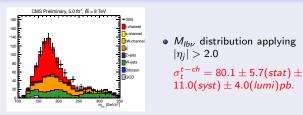
Tagged:

 $\sigma_{t\bar{t}} = 187 \pm 17(stat)^{+18}_{-17}(syst) \pm 6(lumi)$ pb

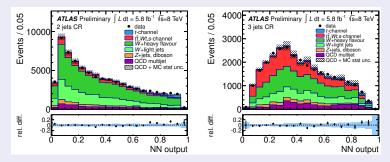


- Cross section measurement
 - Dileptonic and Semileptonic channel. CMS-TOP-PAS-12-007, CMS-TOP-PAS-006, ATLAS-CONF-2012-149
 - Single-top t-channel. CMS-TOP-PAS-12-011, ATLAS-CONF-2012-132

- E - N


A D > A B > A B > A

Measurement of single-top t-channel cross section (CMS)

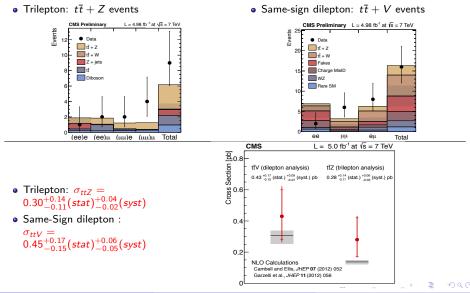

CMS analysis at 8 TeV

- Leptonic channel.
- Signal extraction: maximum likelihood fit to the $|\eta_i|$ distribution.
- Main bkg: from data in CRs.

Measurement of single-top t-channel cross section (ATLAS)

- Leptonic channel.
- Multivariate analysis
- Signal extraction: maximum likelihood fit to the NNoutput distribution.
- Two separate analyses: 2 or 3 jets.
- Signal region: 1 b-tagged jet
- Control region: no b-tagged jets
- Systematics: JES, b-tagging, ISR/FSR.


```
\sigma_{t \overline{t}} = 95 \pm 2 (\textit{stat.}) \pm 18 (\textit{syst.}) \text{pb}
```


C. Ferro (NCU)

- Cross section measurements
 - Dileptonic and Semileptonic channel. CMS-TOP-PAS-12-007, CMS-TOP-PAS-006, ATLAS-CONF-2012-149
 - Single-top t-channel. CMS-TOP-PAS-12-011, ATLAS-CONF-2012-132
 - Measurement of Vector Boson Production associated with $t\bar{t}$ pairs at 7 TeV. CERN preprint: CERN-PH-EP-2013-033

(日) (同) (日) (日)

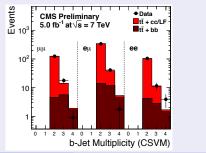
Measurement of Vector Boson Production associated with $t\bar{t}$ pairs

• Key ingredient to test the SM validity. First measurements of the direct ttZ coupling.

Cristina Ferro

- Cross section measurements
 - Dileptonic and Semileptonic channel. CMS-TOP-PAS-12-007, CMS-TOP-PAS-006, ATLAS-CONF-2012-149
 - Single-top t-channel. CMS-TOP-PAS-12-011, ATLAS-CONF-2012-132
 - Measurement of Vector Boson Production associated with $t\bar{t}$ pairs at 7 TeV. CERN preprint: CERN-PH-EP-2013-033
 - Measurement of the cross section ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}ii}$. CMS-TOP-PAS-12-024

イロト イポト イヨト イヨト

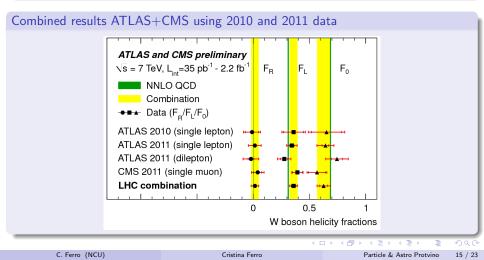

Measurement of the cross section ratio $R = \sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$

Motivations

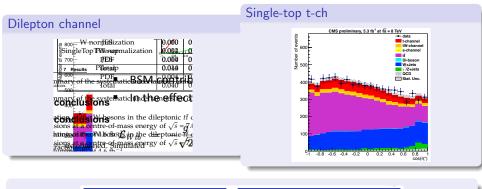
- $t\bar{t}H$ is one of the most promising channels for the direct measurement of the top quark Yukawa coupling with the H boson.
- $\bullet\,$ If the new observed particle is the SM Higgs boson $\rightarrow\,$ it decays mainly into $b\bar{b}$ in the final state.
- Because of the irreducible non-resonant background from the production of $t\bar{t}$ pair in association with $b\bar{b}$, the $t\bar{t}b\bar{b}$ final state has not yet been observed.
- For the first time we measured the cross section ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$.

Analysis

- $t\bar{t}$ decaying dileptonically.
- Fit to b-tagging jet-multiplicity to extract signal from bkg.
- Systematics: fake b-fraction
- $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj} =$ 3.6 ± 1.1(stat) ± 0.9(syst)%.
- MC predictions: 1.2% MADGRAPH, 1.3% POWHEG


- Top quark Properties
 - W polarization

2


イロン イロン イヨン イヨン

W Polarization

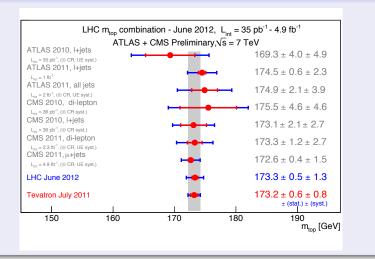
- θ^* disribution (angle between the p(lepton) in W rest frame and p(W).)
- Test V-A structure of tWb-vertex, possible BSM contribution modify elicity fractions: F_0 , F_L , F_R .

W polarization with 2012 data at 8 TeV (CMS)

$$\begin{cases} F_L = 0.288 \pm 0.035(\text{stat}) \pm 0.040(\text{syst}) \\ F_0 = 0.698 \pm 0.057(\text{stat}) \pm 0.063(\text{syst}) \\ F_R = 0.014 \pm 0.027(\text{stat}) \pm 0.042(\text{syst}) \end{cases} \begin{cases} F_L = 0.293 \pm 0.069(\text{stat.}) \pm 0.030(\text{syst.}), \\ F_0 = 0.713 \pm 0.114(\text{stat.}) \pm 0.023(\text{syst.}), \\ F_R = -0.006 \pm 0.057(\text{stat.}) \pm 0.027(\text{syst.}). \end{cases}$$

C. Ferro (NCU)

イロト イヨト イヨト イヨト


- Top quark Properties
 - W polarization
 - Top quark mass: JHEP 12(2012) 105 [arXiv:1209.2319], ATLAS-CONF-2013-046

3

イロト イヨト イヨト イヨト

Top quark mass LHC Combination

CMS PAS TOP-12-001, ATLAS-CONF-2012-095

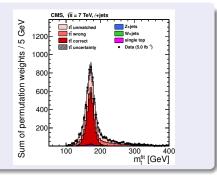
(日) (同) (日) (日)

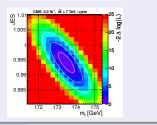
Direct Mass: Lepton+ jets. (CMS)

Signature

- 1 e^\pm or 1 μ^\pm
- 4 jets, 2-btags

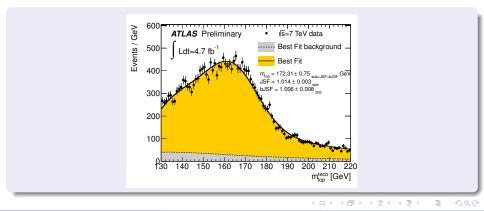
Analysis ("2D-ideogram")


- Reconstruct top mass from kinematic fit (P_{gof})
- 2D max. likelihood fit of the mass and JES using W mass costraint.
- weight each fit solution by P_{gof} to reduce impact of events without correct permutations.


Systematics

• main one: b-jet energy scale (0.61).

Result


```
• m_{top} = 173.5 \pm 0.4_{stat+JES} \pm 1.0_{syst} \text{GeV}
```


Direct Mass: ATLAS

- 3D template analysis in lepton+jets channel. 2011 data at 7TeV have been used.
 it allows to reduce drastically the JES and bJES uncertainty
- Top mass extracted using an unbinned likelihood fit to data
- insitu determination of the JSF and bJSF
- $m_{top} = 172.31 \pm 0.75(stat + JSF + bJSF) \pm 1.35(syst) GeV$

- Top quark Properties
 - W polarization
 - Top quark mass
 - Top anti-top mass difference

э

イロト イヨト イヨト イヨト

Measurement of the top anti-top mass difference in pp collisions at 8 TeV (CMS)

Motivation

- CPT invariance implies equality of particle and anti-particle masses.
- Several extensions of the SM include CPT violation effects.
- The top quark is unique for this kind of CPT test in the quark sector for two main reasons: it decays before hadronization.
 - large dataset due to the large top quark cross section production at LHC

analysis

- tt semileptonic channel.
- Idiogram method used to reconstruct the m_t .

Final Results

+ jets $m_t = -230 \pm 264 \text{ (stat.) MeV}$, The results for Δm_t are compatible with the expectation from the e^{-} + jets $m_t = -325 \pm 294 \text{ (stat.) MeV}$, hypothesis of CPT symmetry. combined $m_t = -272 \pm 196 \text{ (stat.)} \pm 122 \text{ (syst.) MeV}$. This is more precise by at least a factor two than any of the previous public results.

- Top quark physics: Key to QCD, electro-weak and New Physics
- A wealth of measurements available from ATLAS and CMS (7 and 8 TeV).
- For the first time the ratio $R = \sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$ and the cross section of the top pairs produced in association with Vector bosons have been measured.
- Top mass measured by both collaboration: Tevatron precison already reached. Altogether LHC has a number of measurements that explore top quark mass systematics in a sophisticated way, aiming to go beyond the present systematic limitation.
- Many measurements have not been presented: CP violation, FCNC, differential cross, spin correlation, charge...
- Still no hints of new physics \rightarrow we are preparing the new data taking at 14 TeV.

(a)