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Outline

e |ntroduction

* Recent experimental results on charged
particle production in DIS (H1prelim-13-032)

— Test of Monte Carlo Models
* Parton evolution dynamics

— Test of the new phenomenological model
* Other predictions of the model



DIS at HERA
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DIS at HERA

Vs — ep centre-of-mass energy

Q* — photon virtuality

Xx — Bjorken variable

y — inelasticity

W — photon-proton system mass [Mx]




H1 Detector and experimental setup
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Parton evolution models and HFS

RAPGAP DJANGOH
DGLAP CDM (Colour Dipole Model)
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DGLAP CDM = non-DGLAP
Strong ordering in ﬂ .
transerverse momentul X Random walk in

hadronisation

/ transverse momentum

Parton Distribution Functions (CTEQ6 (LO))
+
DGLAP Model (Matrix Element + Parton Shower)

Colour Dipole Model (BFKL-like parton evolution)
+

Lund string fragmentation model for hadronisation

Hadronic Final State

hadrons
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Results: Comparison with MC
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Results: Comparison with MC
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Both DJANGOH and RAPGAP describe the n* distribution rather well,
but NOT the spape of the Pt* spectra in the central region
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Phenomenological model

Two contributions to hadron production

1. Radiation of hadrons by valence gquarks
Theses partons exist long before the interaction and
considered as a thermalized statistical state
Boltzmann-like exponential distribution

2. Virtual partons exchanged between colliding partonic systems

:> power-law spectrum (typical for pQCD)
e

gamma

I gamma

A.A. Bylinkin and A.A. Rostovtsev arXiv: 1209.0958 [hep-ph]



Comparison of pp and yy Spectra
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DIS at HERA (yp) Is the unique possibllity to study
the transition in hadroproduction dynamics
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Power-law term contribution
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Transition between two hadroproduction contributions
IS observed with approaching the proton fragmentation
region

As It Is qualitatively predicted by the model "



Type of produced particle

QCD-fluctuations are democratic to quark flavour while valence

guark radiation can't produce heavy flavours
Prediction: Kaon (and J/{) spectra should have less exponential

contribution then pion
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Type of produced particle

QCD-fluctuations are democratic to quark flavour while valence
guark radiation can't produce heavy flavours
Prediction: Kaon (and J/{) spectra should have less exponential
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Dependence of the spectra shape
on multiplicity

Charge multiplicity is proportional to the number of Pomerons
Involved

Prediction: Power-law contribution will increase with
the increase of multiplicity
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Dependence of the spectra shape

on multiplicity

Charge multiplicity is proportional to the number of Pomerons

Involved

Prediction: Power-law contribution will increase with

the increase of multiplicity
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Energy of Collision

The number of pomerons involved is increasing with the growth of
the collision energy

Prediction: Power-law contribution will increase with the
increase of Vs
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Energy of Collision

The number of pomerons involved is increasing with the growth of
the collision energy

Prediction: Power-law contribution will increase with the
increase of Vs
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Dependence of the spectra
shape on pseudorapidity

In proton fragmentation region the role of
valence quarks is more important

Charge particle pseudorapidity prediction: Dominance of exponential term
distribution at vs ~ 630 Gev in the high rapidity region
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Dependence of the spectra
shape on pseudorapidity

Charge particle pseudorapidity
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Summary

Transverse momenta and rapidity spectra were measured with
H1 detector at HERA at Vs = 225 GeV.

Different parton dynamics models were studied:

— DJANGOH(CDM) provides the best description of the data
— However it fails to describe the spectra in central region
Phenomenological model for hadroproduction was introduced

Good agreement between the qualitative prediction of the
model and the experimental data was found.

Other predictions of the model have been tested

Thank you for your attention!
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Other predictions of the introduced model have been already tested

1. Exponential term is due to valence quarks
mmmp  Spectra in yy-collisions should have power-law term only
[1] Systematic studies of hadron production spectra in collider experiments
A.Bylinkin and A.Rostovtsev, arXiv:1008.0332 [hep-ph].
2. QCD-fluctuations are democratic to quark flavour
mmmd  Ka0n spectra should have less exponential distribution then pion
[2] Anomalous behavior of pion production in high energy particle collisions
A.Bylinkin and A.Rostovtsev, Eur.Phys.J.C 72(2012)1961,
[3] Comparative Analysis of Pion, Kaon and Proton Spectra Produced at PHENIX
A.Bylinkin and A.Rostovtsev, arXiv:1203.2840 [hep-ph].
3. Charge muiltiplicity is proportional to the number of Pomerons involved
Exponential contribution will decrease with the increase of multiplicity
[4] An analysis of charged particles spectra in events with different charged
multiplicity. A.Bylinkin and A.Rostovtsev, arXiv:1205.4432 [hep-ph].
4. In_proton fragmentation region the role of valence quarks is more important
Dominance of exponential term in the high rapidity region
[5] A variation of the charged particle spectrum shape as function of rapidity in high
energy pp collisions. A.Bylinkin and A.Rostovtsev, arXiv:1205.6382.
5. The number of pomerons involved is increasing with the growth of the collision energy
=mmp POWer-law contribution will increase with the increase of Vs



Why our approach Is better?

Systematic defects in the data description
using traditional approach

Experimental data divided over the values of
the fit function in corresponding pomts
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The new parameterization shows much better
approximation of the experimental data.



Temperature In heavy-ion
collisions

T as function of energy density
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Parameters of the Fit
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Transverse Momentum Spectra of Charged Particles

(Differential Invarlant Cross-Section)

T A single smooth
—=1 Tsallis-type
1f -~ function for the
o'l : whole kinematical
%10‘2— reglon
2" F Traditional approximation:
109 d 0- A
10° = : .A:EEH(- ! Y S S S d Ekln
- P Rk
N s T[N
'GeV!
Nonperturbative 7 El" \/PT +m’ -m,

thermodynamics pQCD



Does Tsallis-type power law distribution really
describe the hadron production spectra?

To answer this question let’s plot a ratio = data / fit function
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On both plots one observes a shallow dip at E; values below 1 GeV followed
by a broad bump above 1 GeV.

These defects are hidden on usual logarithmic plots!

erved systematic defects require to modify the approximati



A modification of the Tsallis function

Take two contributions: Exponential + Power law functions
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Generalized forms: exp(—F(P;)/T,) 1/1+F'(P.)/N)"

With true scalars F,F'=PB; or E;" (not P, or P;)

¥* | ndf 23.171 36
A 9.639 + 2.722
T 0.4391+ 0.05024
n 4,183+ 0.1308
Al 207.2+ 13.9

1|:F=

S10 e
& * Power law
10 »
: 5
T10° E=:
%%

-
=
S

=3
=

g SppS p-p

| ;Et1kin

The best fits are given byA, @xp(-E;" /T,)+ A/1+P? /T*N)"



R Value

The relative contribution of exponential and power-law
terms can be calculated by integrating each term by
transverse momentum from O to the upper bound of
the kinematical region
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Correlation Between Parameters

5 0.8
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Better approximation is not just a result of exceeding
the number of parameters of the fit function



Expected Results for DIS
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