X-ray fluorescence from the inner disc in Cygnus X -1

A. C. Fabian, ${ }^{1}$ M. J. Rees, ${ }^{1}$ L. Stella ${ }^{2,3}$ and N. E. White ${ }^{2}$
${ }^{1}$ Institute of Astronomy, Madingley Road, Cambridge CB3 OHA
${ }^{2}$ EXOSAT Observatory, Astrophysics Division of ESA, Space Science Department, ESTEC, Noordwijk, The Netherlands
${ }^{3}$ On leave from ICRA, Department of Physics ' G. Marconi', University of Rome, Italy

Accepted 1988 December 20. Received 1988 November 28; in original form 1988
October 6

Summary. The quasi-blackbody plus power-law spectra of many accreting black-hole sources suggests that relatively cold matter is surrounded by hard X-ray emitting plasma. Fluorescent iron lines are produced by X-irradiation of the cold gas. The shape and variability of these lines can be used to map the innermost regions around the black hole. In the case of a disc geometry for the cold gas, the effects of doppler-broadening and gravitational and transverse redshifts produce a characteristic line profile which depends upon inclination. We show here that the broad, iron emission line found in Cyg X-1 by Barr, White \& Page is well modelled by fluorescent emission from the inner parts of an accretion disc inclined at ~ 30 degrees. The mass of the central object and properties of the accretion flow can be determined by future higher resolution studies of this and similar sources, including Active Galaxies.

1 Introduction

The X-ray spectra of sources identified as accreting black holes, such as Cyg X-1 and Seyfert 1 galaxies, often appear to contain two components: the soft X-rays are dominated by a steep spectrum and the harder X-rays by a power law of energy index ~ 0.7. The first component is
step the other parameters are fixed at $r_{\mathrm{i}}=10 r_{\mathrm{s}}, r_{0}=100 r_{\mathrm{s}}, i=30^{\circ}$ and $q=-2$. The profile is most sensitive to the outer radius and the inclination. It tends to a single broad peak at low inclination, and/or large r_{0}. For the remaining cases it is a double profile, with the blue peak a factor of 2-3 stronger.

It is clear from Fig. 1 that the overall shape of the line can be used as a sensitive diagnostic to determine the inclination of the system, as well as the location of the line-emission region. The

Figure 1. Line profiles computed using the method given in the Appendix. When not specified, the other parameters are fixed at $r_{\mathrm{i}}=10 r_{\mathrm{s}}, r_{0}=100 r_{\mathrm{s}}, i=30^{\circ}$ and $q=-2$. Note that the blue horn is always brighter than the red one and a net redshift only occurs for low inclinations. The small spike on the high-energy side of the blue horn (see curves with $r_{\mathrm{i}}=10 r_{\mathrm{s}}$ and $i=30^{\circ}$) is due to radiation emitted by the most blueshifted regions of the $\operatorname{disc}\left(\sim 15 r_{\mathrm{s}}\right.$ for $\left.i=30^{\circ}\right)$.

Observations

Tanaka, Nandra, Fabian. Nature, 1995, 375, 659. Galaxy MCG-6-30-15, ASCA satellite, SIS detectors

Sy 1 type

The line profile of iron $K \alpha$ line in X-ray emission from MCG-6-30-15.

Width corresponds to $80000-100000 \mathrm{~km} / \mathrm{s}$.

- Variability

Sulentic, Marziani, Calvani. ApJL, 1998, 497, L65.

Properties of wide lines at 6.4 keV

- Line width corresponds to velocity
- \quad ~ 80000-100000 km/s MCG-6-30-15

○ $v \sim 48000 \mathrm{~km} / \mathrm{s}$ MCG-5-23-16

- v ~ 20000-30000 km/s many other galaxies
- Asymmetric structure (profile)
- two-peak shape
- narrow bright blue wing
- wide faint red wing
- Variability of both
- line shape
- intensity

Possible interpretation

- - iron $\mathrm{K} \alpha$ emission line

$$
\text { ○ } \quad 6.4-6.9-7.1 \mathrm{keV}
$$

- - radiation of inner part of accretion disk around a supermassive black hole in the center of the galaxy

$$
r \text { emission } \sim 1-4 r g \quad r_{g}=\frac{2 k m}{c^{2}}
$$

Equations of motion

Kerr metric

$$
\begin{aligned}
d s^{2}=- & \frac{\Delta}{\rho^{2}}\left(d t-a \sin ^{2} \theta d \phi\right)^{2}+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2}+ \\
& +\frac{\sin ^{2} \theta}{\rho^{2}}\left[\left(r^{2}+a^{2}\right) d \phi-a d t\right]^{2}
\end{aligned}
$$

or

$$
\begin{gathered}
d s^{2}=-\left(1-\frac{2 M r}{\rho^{2}}\right) d t^{2}+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2}+ \\
+\left(r^{2}+a^{2}+\frac{2 M r a^{2}}{\rho^{2}} \sin ^{2} \theta\right) \sin ^{2} \theta d \phi^{2}-\frac{4 M r a}{\rho^{2}} \sin ^{2} \theta d \phi d t
\end{gathered}
$$

Equations of motion

Equations of photon motion:

$$
\begin{aligned}
\frac{d t}{d \lambda} & =-\frac{r_{g} r a}{\rho^{2} \Delta} L+\frac{\omega_{0}}{\Delta}\left(r^{2}+a^{2}+\frac{r_{r} r a^{2}}{\rho^{2}} \sin ^{2} \theta\right) \\
\frac{d \phi}{d \lambda} & =\frac{L}{\Delta \sin ^{2} \theta}\left(1-\frac{r_{g} r}{\rho^{2}}\right)+\frac{r_{g} r a}{\rho^{2} \Delta} \omega_{0} \\
\left(\frac{d r}{d \lambda}\right)^{2} & =\frac{1}{\rho^{4}}\left[\left(r^{2}+a^{2}\right) \omega_{0}-a L\right]-\frac{K \Delta}{\rho^{4}} \\
\left(\frac{d \theta}{d \lambda}\right)^{2} & =\frac{K}{\rho^{4}}-\frac{1}{\rho^{4}}\left[a \omega_{0} \sin \theta-\frac{L}{\sin \theta}\right]^{2}
\end{aligned}
$$

where

$$
\begin{gathered}
\Delta=r^{2}-r_{g} r+a^{2}, \quad \rho^{2}=r^{2}+a^{2} \cos ^{2} \theta, \\
r_{g}=2 k m, \quad a=M / m
\end{gathered}
$$

Equations of motion

For numerical solution the system should be replaced with

$$
\begin{aligned}
& \frac{d t^{\prime}}{d \sigma}=-\hat{a}\left(\hat{a} \sin ^{2} \theta-\xi\right)+\frac{\hat{r}^{2}+\hat{a}^{2}}{\hat{\Delta}}\left(\hat{r}^{2}+\hat{a}^{2}-\xi \hat{a}\right), \\
& \frac{d \hat{r}}{d \sigma}=r_{1}, \\
& \frac{d r_{1}}{d \sigma}=2 \hat{r}^{3}+\left(\hat{a}^{2}-\xi^{2}-\eta\right) \hat{r}+(\hat{a}-\xi)+\eta, \\
& \frac{d \theta}{d \sigma}=\theta_{1}, \\
& \frac{d \theta_{1}}{d \sigma}=\cos \theta\left(\frac{\xi^{2}}{\sin ^{3} \theta}-\hat{a}^{2} \sin \theta\right), \\
& \frac{d \phi}{d \sigma}=-\left(\hat{a}-\frac{\xi}{\sin ^{2} \theta}\right)+\frac{\hat{a}}{\hat{\Delta}}\left(\hat{r}^{2}+\hat{a}^{2}-\xi \hat{a}\right) .
\end{aligned}
$$

The system has two integrals:

$$
\begin{aligned}
& \epsilon_{1} \equiv r_{1}^{2}-\hat{r}^{4}-\left(\hat{a}^{2}-\xi^{2}-\eta\right) \hat{r}^{2}-2\left[(\hat{a}-\xi)^{2}+\eta\right] \hat{r}+\hat{a}^{2} \eta=0 \\
& \epsilon_{2} \equiv \theta_{1}^{2}-\eta-\cos ^{2} \theta\left(\hat{a}^{2}-\frac{\xi^{2}}{\sin ^{2} \theta}\right)=0
\end{aligned}
$$

Gallery of profiles
A.F. Zakharov \& S.V. Repin, Mem. SAlt, 7, 60 (2005) ; New

Astronomy, 11, 405 (2006); astro-ph/0510548

Simulation result

ıerview of possible line profiles a hot spot for different values of lial coordinate and inclination gle.
he radial coordinate decreases m 10 rg on the top to 0.8 rg on the ttom. The inclination angle reases from 85 degrees in the left umn to 89 degrees in the right.

רarov A.F, Repin S.V. A\&A, 2003, 7.

