"What you get" Transverse damper system (ADT)

F. Dubouchet W. Höfle G. Kotzian D. Valuch

Special thanks to: A. Boucherie, A. Butterworth, S. Calvo, G. Cipolla, D. Jacquet, M. Jaussi, N. Jurado, F. Killing, E. Montesinos, C. Renaud

G DE ALGUE

The transverse damper system

- Operation in 2012 was very smooth, routinely switching between different modes and operating the feedback during the entire LHC cycle.
- Not much downtime, total 18 hours in fault
- Several MDs
 - ADT vs. BBQ cohabitation
 - Noise vs. emittance conservation
 - Fast controlled losses
 - Increased bandwidth operation

New features

- Selective blow-up
- Tune observation "infrastructure"
- High bandwidth

ADT as seen from the CCC

"What you get" Transverse damper system, Evian 2012

Faults summary in 2012

Total downtime 18 hours in 2012

Tetrode exchange	Amplifier faults	HV Power supply faults	PLC & Server faults	Kicker Faults	Low-level RF
#9 #12 #16	#3 PT100 (exchange amplifier)	#15-16 HV cables burnt	#11-12 FESA server crashed	RB46 TPG 300 exchange	40MHz clock havoc after TS
#3 #15 #6	#8 PT I 00 (exchange amplifier)	#9-10 Gate control failure	#9-10 FESA server crashed		Gigabit link connector bad soldering
#14 #1 #4 #2	#2 attenuator (exchange amplifier)		#11-12 Beckhoff module exchange		
Total 20 tetrodes out of 32 replaced	#9 HV load (exchange amplifier)				
	#10 water flow meter				

ADT Settings management

Frequently asked question: "Why do we always need to call the ADT experts to load settings?"

- Beam position part is sensitive to per-bunch intensity
 - Wrong settings could lead to a damage of expensive equipment resulting in a very long downtime
 - Injection inhibit interlock implemented in 2012
- Signal processing part is sensitive to bunch spacing
 - Wrong settings will lead to unstable beam

ADT Settings management

- Most settings stored in LSA:
 - Beam processes e.g. DISCRETE_LHCRING_ADTDSPU_50ns with parameters relevant to bunch spacing
 - Beam processes e.g. DISCRETE_LHCRING_ADTDSPU_SQUEEZE relevant to the cycle phase
- Several operational sequences e.g.
 - LOAD ADT DSPU INJECTION SETTINGS
 - LOAD ADT DSPU BUNCH MASK FOR PHYSICS
 - ADT LOAD WIDEBAND SETTINGS
- Bunch intensity + interlock is controlled manually

ADT Settings management

Why not yet automatic?

	6 <u> </u>	🛓 LHC Injection Scheme Display					
	Edit types		HEAD-ON COLLISIONS LONG RANGE COLLISIONS B1 LONG RANGE COLLISIONS B2				
ł	Lucepes	INJECTION SCHEME	General Info Bunch Configuration InjectionSeq	lence			
	Hypi L.38TeV		INJECTIONS B1				
	3.5TeV_10Ap:	GRP: 50ns	REPUCKet Spacing hubstch DShtchs but at Runch int Datt Ty REPucket Spacing hubstch DShtchs but at	Runch Int Dart Tv			
	3.5TeV_10AD			Danch Inc Part Ty			
	3.5TeV_10 3.5TeV_10	Could be made	automatic but it requires stringent contro				
1	3.5TeV_10 3.5TeV_10		aucomatic, but it requires stringent contro				
	3.5TeV_10 3.5TeV_10	the survey of the survey					
3 STEV_10 THE DROCESS FROM THE OP SIDE!							
1	3.5TeV_10 3.5TeV_2A	•					
	3.5TeV_BTKAU 3.5TeV Ramp	50ns 1104b+1small 1042 35 1008 108bpi ob	78537 5U 36 4 144 100 U 78537 5U 36 4 144	100 0			
1	3.5Tev_Ramp	50ns 1200b 36x3bpi 13ini scrub	<u>22007</u> 50 36 4 144 100 0 <u>22007</u> 50 36 4 144	100 0			
	TeV_10Aps_	50ns_1236b+1small_1180_37_1152_144bpi					
\checkmark	TeV 10Aps	50ne_1374_1368_0_1262_144bpr12inj	<i>30821</i> 50 <u>36 4 144</u> 100 D <u>30821</u> 50 36 4 144	100 0			
4	TeV_10Apr_ TeV_10Apr_	50ns_1374_1368_0_1262_144bpi12inj_V2					
4 4	ITeV_10Aps_ ITeV_10Aps_	59ns_1380b+1small_1318_39_1296_144bpi					
4	HTeV_10Aps_ HTeV_10Aps_	50ns_1380b_1331_0_1320_144bpi12inj	According to this we are				
4	ITeV_10Aps_ ITeV_10Aps_	50ns_1380b_1377_0_1274_144bpi12inj	injecting precisely lell pph				
4	TeV_10Aps_	50ns_1380b_1377_0_1274_144bpi12inj_swap	injecting precisely retri ppo				
4	ITeV_10Aps_	50ns_1380b_1380_0_12/4_1440pi12inj	since 2008				
	Makı	50ns_18b_6bnoncoma_6bpi	SINCE 2000				
		50ns 228b+1small 214 12 180 36bni 8ini					
	R	E0no 2626 266 0 420 4206ni2ini					
_	(Global editic	refresh		save as csv file			
	18:22:40 - head-on and long range collisions displayed						
	× 12:39:27 - In						

Controlled blow-up (new in 2012)

- A portion of the beam (up to 11.5 µs long) could be excited by a white noise – fully controlled blow-up
- Made loss maps extremely efficient. All "transverse" loss maps could be done in one single ramp
- The excitation could be done at any phase of the cycle
 - Loss maps during the ramp, squeeze, physics...

Controlled blow-up (new in 2012)

13/09/2012

- Example of controlled excitation
 - I4 bunches injected and ramped
 - When in collision two bunches used for loss maps
 - Remaining 12 used for several hours of physics!

Second pPb ramp

- 22:42 @ 4 TeV
- 23:00 Re-phasing found collisions
- 00:50 Start of loss maps
- 01:26 Stable beams, first time pPb
 - □ Lumi's approaching 10^26 cm-2s-1

"What you get" Transverse damper system, Evian 2012

Gain modulation (new in 2012)

- Gain modulation within turn
 - Commissioned early 2012, aim to help BBQ to get cleaner signal
 - Not helping with standard BBQ and many bunches
 - ▶ Fully exploited late 2012 with the gated BBQ made operational

"What you get" Transverse damper system, Evian 2012

- Power amplifiers, Ist order low pass, -3 dB @ I MHz
- Power amplifier phase response compensated by digital filter

- The full power is needed only for efficient injection oscillation damping, damper uses <1% of its strength otherwise</p>
- Small signal response could be enhanced by drive signal predistortion
- Enhanced bandwidth provides faster damping of high frequency modes
 - "Ideal damper" treats each bunch individually
 - Drawback increase of noise injected through the damper, mitigations for noise reduction foreseen for after LSI
- Commissioned end September 2012

Measured enhanced frequency response reaches beyond 20 MHz → Bunch by bunch damper!

Increased bandwidth has interesting consequences → also the cleaning and excitation becomes feasible bunch-by-bunch

Loss maps 14.12.2012. A train of 12 bunches with 25ns spacing + 2 indivs injected. Bunches in slots #44 and #56 used for loss maps. Bunches in slots #47, #48, #50 were consecutively blown up without significant effect on the neighbour bunches.

Tune measurement tests

ADT vs. BBQ cohabitation

- Several tests and operational developments done on tune extraction from ADT
- Witness bunch method: active kicking by 10's μm
- Extraction of tune from the residual noise
- Passive observation of bunches with lowered gain

Tune measurement tests

Tune measurement with active kicking of the first 6 (witness) bunches with full ADT gain. Horizontal plane, Beam 1, 12.8.2012.

Performance scaling for 6.5 TeV

- Damping time in order of 50 turns feasible at 6.5 TeV, needs redistribution of gain within the system (LSI)
- Enhanced bandwidth operation in stable beams
 - Potential issue with noise
- Noise mitigation measures during LSI
 - Double number of pickups
 - New pickup cabling
 - New beam position and signal processing electronics
 - Optimized signal processing

"What you get" Transverse damper system, Evian 2012

Plans for the LS1

- Complete recabling replacement of the damaged coaxial cables
 - >25 km of 7/8" smooth-wall coaxial cable
- Increasing number of pickups from 2 to 4 per beam per plane
- New beam position module (16x)
 - Iower noise, better observation
- New digital signal processing unit (8x)
 - handling of 4 pickups, sophisticated excitation schemes, gain modulation, better observation, automatic setting up

Plans for the LS1

Tune extraction

- Decide on optimum after careful analysis of collected data
- Witness bunches proved very promising, can we have a decision to keep them?
- Internal instability observation trigger

Re-commissioning after LS1

ADT will undergo significant upgrade during the LSI

Restart and re-commissioning with beam will need time...

Summary

- ADT operation in 2012 was very smooth, very few hardware problems
- ADT is routinely switching between different modes and operating the feedback during the entire LHC cycle
- 2012 was devoted mainly to development of new features, modes of operation, studies and MDs
- New features like selective blow-up significantly reduced duration of certain repetitive tasks (like loss maps) and made many other tests possible (e.g. fast losses)

Summary

- LSI will be very busy for the ADT team
 - New cables, new electronics, new firmware
 - Implementation and proper integration of all new features and operational modes experienced during the 2010-2012 run
 - New automatic setting up procedures required

Outstanding:

 Settings management and switching between different operational modes and intensities

Thank you...

The transverse damper in general

The transverse damper is a feedback system: it measures the bunch oscillations and damps them by fast electrostatic kickers

- Key elements:
 - Beam position monitor(s)
 - Signal processing system
 - Power amplifiers
 - Electrostatic kickers
- Key parameters:
 - Feedback loop gain, phase and total delay
 - Kick strength
 - System bandwidth
 - The one visible from the CCC:

"What you get" Transverse damper system, Evian 2012

LHC transverse damper (ADT)

"What you get" Transperse-damaesignatemcessing ଥିନା 2

ADT through the cycle

"What you get" Transverse damper system, Evian 2012