BI Day----Convention Centre of Archamps 6th of Dec. 2012

Electro-Optic Bunch Profile Monitor for the CERN-CTF3 probe beam

R. Pan, T. Lefevre , S.P. Jamison, W.A. Gillespie CERN STFC Daresbury Laboratory University of Dundee

Outline

Introduction ---- CALIFES

Energy	200 MeV
Train duration max.	140ns
Train rep. rate	5 Hz
Bunch length	8-10 ps (1.4 ps)
Bunch rep. rate	1.5 GHz
Bunch charge	0.1-0.05nC (0.6 nC)

Existing bunch profile monitor:

- Deflecting cavity (bunch head downward, tail upward)
- Bunch length measurement with an acceleration structure (bunch head decelerated, tail accelerated)

Coulomb field of e-bunch

Coulomb field temporal profile

•High energy , Coulomb field temporal profile is approximately the bunch temporal profile

• Broadening of profile:
$$\Delta t \sim \frac{2i}{v}$$

Simulation: Coulomb field of e-bunch

Coulomb field temporal profile and broadening

$$E_{Colm} = E_{e0} * \rho$$

- Radial offset from single electron E_{e0}
- ullet Electrons' density distribution within one bunch ho
- Convolution

Simulation: EOSD

Electro-Optical Spectral Decoding:

EO bunch profile measurements:

- --EO spectral decoding
- --EO temporal decoding
- --EO spatial encoding
- --EO up conversion

- Linear chirped optical pulse
- Polarization variation caused by Coulomb field—laser nonlinear effect
- ullet Polarization ullet Intensity, by two crossed polarizers
- $I(\lambda) \leftarrow \rightarrow I(t)$

$$E_{out} = (0 \quad 1)R(\varphi)M_{hw}R(-\varphi)R(\alpha)M_{qw}R(-\alpha)R(\theta)M_{EO}R(-\theta) \begin{pmatrix} E_{opt}^{chirp}(f) \\ 0 \end{pmatrix}$$

 $R(\theta)$ ---- rotation matrix

 M_{qw} -----Jones matrix for quarter waveplate M_{hw} -----Jones matrix for half waveplate

Simulation: EO phase mismatching

Simulation: EOSD results and limitation

Other parameters: Laser wavelength: 780nm Crystal thickness: 1mm Laser pulse energy: 1.5nJ Distance: 5mm Pulse duration: 150fs

Short bunch----fast temporal modulation---- spectral content ---- t[~]λ mapping

EO monitor Design for CALIFES

Rotation stage

Laser system

Laser system

Custom Erbium fiber laser with pulse picker

Fundamental wavelength	1560 nm
Laser output power	> 350 mW
Pulse width	< 120 fs
Repetition rate	37.482 MHz
Second-harmonic wavelength	780 nm
Laser output power	> 120 mW
Pulse width	< 120 fs
Beam size (1/e ²)	Typ. Ø 1.2 mm (780 nm)
	Typ. Ø 3.5 mm (1560 nm
Beam divergence	< 1 mrad (780 nm)
	< 2 mrad (1560 nm)

Laser head and controller

Synchronization box

Timing and synchronization scheme

EO monitor Design for CALIFES

Chamber design

First chamber includes a mirror The second chamber includes a mirror, a crystal and a OTR screen

Laser/OTR Transfer Line

L1 f=515.3mm L2 f=5153mm L3 f=5153mm L4 f=515.3mm ₫=50.8mm **∮=70mm** ∮=50.8mm δ=50.8mm Laser &=1.2mm divergence< 1 mrad Crystal 572mm 4225mm 10306mm 7000mm 567.7mm CLEX Laser lab Streak CLEX camera room f= 1000 mm f= 75 mm Image plane L1 L2 Camera 300 + 917 mm 6482 + 4000 + 3350 mm (13832) 1191 + 700 +1300 mm (3197) 66 mm

We transfer the 780nm fs laser from our laser lab (building 2010-1-002) to CLEX, and transfer the OTR photons from CLEX to our lab.

Laser/OTR Transfer Line 2

Installation: Take the box1 and box2 for example

Box details:

Laser/OTR Transfer Line 3

Expected Resolution

1. Distance between crystal and e-beam

$$\Delta t \sim \frac{2r}{\gamma}$$
 ~10 fs at r=5 mm

2. The frequency response of crystal (material and thickness)

for 1 mm ZnTe: ~333 fs ~ ~1/(3THz)

3. EOSD limitation (Laser pulse duration and chirped duration)

 $\tau_{\rm lim} = \sqrt{\tau_0^{FWHM} \tau_c^{FWHM}}$ ~550 fs (100 fs \rightarrow 3 ps)

4. Resolution of spectrometer and CCD ~40 fs (512 pixels)

Summary & Outlook

Summary:

EO technique is a non-destructive testing technique, and has the feasibility in fs resolution.

System simulation, designs of laser system, transfer line, chambers, detection system and timing and synchronization have done.

Based on numerical simulation, the resolution of this system is expected to be sub-picosecond.

Outlook:

The system waiting for being installed during the winter shut down. First measurement in the beginning of next year.

Resolution improvement study

This research project has been supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2008-215080-DITANET)

Thank You !

References

- X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer and W. Seidel, Phys. Rev. Lett. 85, 3404 (2000).
- [2] I. Wilke, A. M. MacLeod, W. A. Gillespie, G. Berden, G. M. H. Knippels, and A. F. G. van der Meer, Phys. Rev. Lett. 88, 124801 (2002).
- [3] A. Azima, S. D^{··} usterer, H. Schlarb, J. Feldhaus, A. Cavalieri, D. Fritz, and K. Sengstock, In Proceedings of the EPAC 2006, Edinburgh, Scotland, 2006, p. 71.
- [4] G. Berden, S. P. Jamison, A. M. McLeod, W. A. Gillespie, B. Redlich, and A. F. G. van der Meer, Phys. Rev. Lett. 93, 114802 (2004).
- [5] S. P. Jamison, G. Berden, P. J. Phillips, W. A. Gillespie, and A. M. MacLeod, Appl. Phys. Lett. 96, 231114 (2010).
- [6] J. D. Jackson. Classical Electrodynamics (John Wiley and Sons, Inc., 1999).
- [7] S. P. Jamison, A. M. MacLeod, G. Berden, D. A. Jaroszynski, W. A. Gillespie, Opt. Lett. 31, 1753 (2006).
- [8] S.P. Jamison, G. Berden, W.A. Gillespie, P.J. Phillips, A.M. MacLeod, in Proceedings of EPAC08, Genoa, Italy, 2008, p. 1149.
- [9] J. Breunlin, Diploma thesis, University Hamburg, 2011.
- [10] B.Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009).
- [11] A. Yariv. Quantum electronics (1989).