

Quench thresholds of LHC magnets

measurements and simulations

Agnieszka Priebe

CERN BE-BI-BL

BI Day

6th December 2012

OUTLINE

- BLM and QPS systems as the LHC magnet main protection
- Overview of Quench Tests
- Quench thresholds of BLM system
- Steady State Quench Test:
 - Experiment on 17th October 2010
 - Geant4 simulations
- Loss pattern optimization and simulation validation
- Fast Losses Quench Test in 2013
- Summary

- Based on ionization chambers located outside the magnet cryostats
- Measures radiation dose of secondary particle shower
- If a threshold value is exceeded, the beam dump is triggered
- The beam can be extracted from the accelerator before quenching occurs

- Based on voltage measurements between two parts of superconducting coils
- If the voltage difference exceeds 100 mV for a time longer than 10 ms, the quench heaters are fired to dissipate the energy stored in the magnetic field over the whole volume of the coil
- The system reacts when a resistive volume is already developed

BEAM LOSS MONITORING SYSTEM (BLM)

 Each LHC arc Main Quadrupole is equipped with 6 monitors (3 per beam)

 Thresholds are set with correspondence to current knowledge on the quench limit

(particle energy, loss duration)

 A precise correlation between energy deposited inside the superconducting coils and BLM signals is required for a proper threshold estimation

QUENCH TESTS OVERVIEW

• Fast Losses QT (injection & dump = single turn)

No	Quenching magnet	Energy [TeV]	Beam	Date
1	MB.A8L3	0.45	B1V	9.08.2008
2	MB.B10R2	0.45	B1V	7.09.2008
3	MB.A12L6	0.45	B1H	20.11.2009
4	MB.A15R2	0.45	B1V	4.12.2009
5	MB.A20R1+others	0.45	B1H	18.04.2010
6	MQ.14R2	0.45	B2V	6.10.2010
7	MQ.14R2	0.45	B2V	6.10.2010
8	MQ.14R2	0.45	B1H	6.10.2010
9	MBRB (RD4.L4)	3.50	B2	1.11.2010
10	MQ.14R2	0.45	B1H	3.07.2011

• Steady State QT (with circulating beam)

No	Quenching magnet	Energy [TeV]	Beam	Date	
1	MQ.14R2	3.50	B2V	17.10.2010	5
	There were also oth	ner Quench Tests but uns	uccessful (no qu	ench)	
BI Da	αV	Agnieszka Priebe	9	6 th Decem	ber 2012

QUENCH TESTS OVERVIEW

• Fast Losses QT (injection & dump = single turn)

No	Quenching magnet	Energy [TeV]	Beam	Date
1	MB.A8L3	0.45	B1V	9.08.2008
2	MB.B10R2	0.45	B1V	7.09.2008
3	MB.A12L6	0.45	B1H	20.11.2009
4	MB.A15R2	0.45	B1V	4.12.2009
5	MB.A20R1+others	0.45	B1H	18.04.2010
6	MQ.14R2	0.45	B2V	6.10.2010
7	MQ.14R2	0.45	B2V	6.10.2010
8	MQ.14R2	0.45	B1H	6.10.2010
9	MBRB (RD4.L4)	3.50	B2	1.11.2010
10	MQ.14R2	0.45	B1H	3.07.2011

• Fast Losses QT (circulating beam)

No	Quenching magnet	Energy [TeV]	Beam	Date	
2	MQ.12L6	4.00	B2H	winter 2013	

• Steady State QT (with circulating beam)

No	Quenching magnet	Energy [TeV]	Beam	Date	
1	MQ.14R2	3.50	B2V	17.10.2010	6
2	MQ.12L6	4.00	B2H	winter 2013	

6th December 2012

QUENCH THRESHOLD OF BLM SYSTEM

STEADY STATE QUENCH TEST - EXPERIMENT

- Performed on 17th October 2010
- o Energy: 3.5 TeV
- o Beam: 2
- Plane: vertical
- No of lost protons: 1.1.10¹⁰
- Loss duration: 5.6 s
- Circulating beam

BI Day

Agnieszka Priebe

6th December 2012

STEADY STATE QUENCH TEST - EXPERIMENT

BLM threshold RS01 (40µs) = 4.68 Gy/s

- BLM monitor factors increased by a factor of 3 to permit the quench
- Real quench: the beam dump triggered by the QPS

- Geant4 simulations
- The LHC halfcell: C14R2
- Detailed magnet representation
- Long pseudo-monitors
- Impacting angle: 202 µrad
- 71 point like losses \rightarrow flexibility
- Correlation: $E_{dep} = f(BLM)$

Agnieszka Priebe

Δφ =

Δz = 9.83 mm

6th December 2012

How to find the best agreement between simulations and experimental data?

Integrated loss pattern (no time evolution) over 6 s

Optimized three free parameters:

- Max of E_{dep} at the end of MQ
- The highest number of secondary particles in 12 the interconnection region (MB-SSS)

Agnieszka Priebe

PLANS FOR THE FUTURE

- In the LHC, UFOs are the Undefined Falling Objects
- UFOs are expected to be a major luminosity limitation in the future
- UFOs rate increases with the beam energy
- BLM thresholds should be increased to avoid undesirable beam dumps

UFO's properties

Femporal loss distribution has

Gaussian shape

Loss duration in order of

milliseconds

BI Day

Agnieszka Priebe

PLANS FOR THE FUTURE

Fast Losses Quench Test – the end of LHC run 2013

- Preparations: 2 MDs ADT Fast Losses Test and the ADT combined with MKQ Fast 0 Losses Test
- Loss duration: \approx 1 ms 0
- Beam: 2, horizontal (based on MD results, UFO loss orientation, machine protection) 0
- Cell: 12L6 0
- Challenges: beam intensity (below 2.10⁹ protons the beam is not seen by many systems, models predict that 0 quench should occur with $\approx 10^8$)

SUMMARY

- Quench Tests are extremely important to estimate the quench levels and update existing thresholds for fast and steady state losses.
- Accurate thresholds are needed to combine a safe machine operation with a reduction of undesired beam dumps.
- Fast Losses Quench Test will allow better understanding of UFO-like losses which are expected to be a major luminosity limitation of the LHC after LS1.
- Geant4 simulations show good agreement with experimental data. The integrated over time loss pattern was presented. An analysis of loss time evolution is ongoing.

THANK YOU FOR YOU ATTENTION !

Questions?

Comments?

Remarks?

BACK-UP SLIDES

How to find the best correlation between simulations and experimental data?

• Simulation-experiment similarity estimator

$$\Sigma_{\mu,\sigma_r,\sigma_l}^{norm} = \sum_{i=1}^{6} \left(\frac{BLM_i^{sim} - BLM_i^{exp}}{BLM_i^{sim}} \right)^2$$

Looking for: minimum

Correlation coefficient

$$r_{BLM_{exp},BLM_{sim}} = \frac{\sum_{i=1}^{6} \left(BLM_i^{sim} - \overline{BLM}_{sim} \right) \left(BLM_i^{exp} - \overline{BLM}_{exp} \right)}{\sqrt{\sum_{i=1}^{6} \left(BLM_i^{sim} - \overline{BLM}_{sim} \right)^2 \sum_{i=1}^{6} \left(BLM_i^{exp} - \overline{BLM}_{exp} \right)^2}}$$

Looking for: maximum

(value the closest to 1)

How to find the best correlation between simulations and experimental data?

$$\sigma_{right} = (1.3\pm0.4) \text{ m and } \sigma_{left} = (1.5\pm0.2) \text{ m}$$

BI Day

Agnieszka Priebe

6th December 2012

r_{exp,sim}

2.6

exp.sim

0.98

0.96

0.94

0.92

0.9

Integrated loss pattern (no time evolution) over 6 s

• Optimized three free parameters:

- Max of E_{dep} at the end of MQ
- The highest number of secondary particles in the interconnection region (MB-SSS)

Agnieszka Priebe

Integrated loss pattern (no time evolution) over 6 s

• Optimized three free parameters:

$$\rightarrow \mu = 0.9 \text{ m}$$

$$\rightarrow \sigma_{right} = 1.05 \text{ m}$$

$$\rightarrow \sigma_{left} = 1.68 \text{ m}$$

- Max of E_{dep} at the end of MQ
- The highest number of secondary particles in the interconnection region (MB-SSS)

Agnieszka Priebe

STEADY STATE QUENCH TEST – QUENCH LEVEL

- Radial energy distribution and loss distribution in time are two main inputs to QP3 heat transfer code
- Power law function

$$E_{dep} = p_0 \left(r - p_1 \right)^{p_2}$$

r - radius of the coil

```
p_0, p_1, p_2 – fit parameters
```

- The LHC MQ cables consist of two layers, each with 18 strands.
- Average energy needed to quench the magnet:

Geant4 QP3 Ratio	E	E _{avg} [J cm⁻³]		
4 00 0 5 4 0	Geant4	QP3	Ratio	
1.62 0.54 3	1.62	0.54	3	

This difference can be partly explained by the different meaning of quench limit for Geant4 and QP3.

Agnieszka Priebe

FAST LOSSES QUENCH TEST PREPARATION

Wire Scanner Quench Test (1.11.2010)

- Quench on MBRB magnet after 10 ms
- Robust method (3.5 TeV)
- Good agreement between FLUKA simulations and experiment
- Method suspended
 - → MBRB operates at 4.5 K
 - → No good spare magnet in the case of damage

A new method needed for UFO-timescale losses studies

BI Day

FAST LOSSES QUENCH TEST PREPARATION

Wire Scanner Quench Test (1.11.2010)

FAST LOSSES QUENCH TEST PREPARATION

ADT fast losses test (22.06.2012) results compared to Wire Scanner QT and UFOs

ADT +MKQ fast losses test (12.10.2012) results compared to ADT fast losses test and UFOs

<u>Conclusions</u>

- The ADT sign flip method provides losses in the order of 7-8 ms
- A combination of the ADT with the MKQ

(tune kicker) allows 3-ms loss induction