

0

The HIE-ISOLDE Faraday Cup

BI Day December 6, 2012 Alejandro Garcia Sosa

W. Andreazza, E. Bravin, E. Daniel Cantero, M. Fraser, Y. Kadi, D. Lanaia, D. Voulot, F. Wenander

Contents

- I. Introduction to HIE-ISOLDE
- 2. The short diagnostic boxes
- 3. Review of Faraday cups
- 4. The HIE-ISOLDE Faraday cup
- 5. Simulations
- 6. Experimental Tests
- 7. Conclusions

I. Introduction to HIE-ISOLDE

Energy upgrade 10 MeV/u Construction of SC LINAC + service buildings Intensity upgrade LINAC4+PSB Design Study of target area, Class-A lab and beam lines

Beam quality upgrade RFQ cooler and buncher Solid state lasers for RILIS Higher mass resolving power HRS

I. Introduction to HIE-ISOLDE

Energy upgrade 10 MeV/u Construction of SC LINAC + service buildings Intensity upgrade LINAC4+PSB Design Study of target area, Class-A lab and beam lines

Beam quality upgrade RFQ cooler and buncher Solid state lasers for RILIS Higher mass resolving power HRS

I. Introduction to HIE-ISOLDE

Energy upgrade 10 MeV/u Construction of SC LINAC + service buildings Intensity upgrade LINAC4+PSB Design Study of target area, Class-A lab and beam lines

Beam quality upgrade RFQ cooler and buncher Solid state lasers for RILIS Higher mass resolving power HRS

Courtesy F. Wenander

2. The short diagnostic boxes

2. The short diagnostic boxes

- Currently being developed by CERN and Added Value Solutions (AVS) with the support of the Spanish government (CDTI)
- The device fits in the 90 mm long space available and contains
 - A 45 degree scanning blade with 2 slits (H,V)
 - HIE-ISOLDE Faraday cup
 - Solid-state detector (Absolute energy, ToF)
 - Collimators blade
 - Attenuating and stripping foils

REX vs HIE - DBs

REX DB

- REX Faraday cup (length: 59 mm)
- MCP (beam profile image) or Si detector (energy and TOF)
- Collimators wheel (attenuating and stripping foils as well)

- HIE Faraday cup (14 mm)
- Scanning slits (beam profile)
- Collimators (optics)
- Stripping foils in some cases
- Solid-state detector in a few boxes (absolute energy, TOF)

The most important device that needs to be tested is the FC 14

3. Review of Faraday cups

- Destructive measurement
- Measures absolute beam current
- The escape of electrons increases the value read in the picoammeter.
- Ion-induced electron emission:
 - Low energy electrons (E_e < 20 eV)
 - High energy electrons ($E_e \sim keV$ for MeV/u ions)

4. The HIE-ISOLDE Faraday cup

HIE-ISOLDE

30

4

ISAC 2

Electrons captured and retained Intensity: solid angle of the signal plate

In a simplified model: $\Omega_2 \rightarrow$ retained electrons

$$\Omega_{\rm I} \rightarrow \rm lost \ electrons$$

$$\Omega_2 = 2\pi - \Omega_1 = 2\pi \cos \beta.$$

$$d = 2 r$$

Signal plate geometry

cup	r (mm)	l (mm)	r / l	$\cos \beta$
REX	14.8	32.0	0.4625	0.907
HIE	15.0	0.5	30	0.033
	$\frac{T_C}{T_B} = \frac{\Omega_2}{2\pi}$	$=\frac{1}{\sqrt{1}}$	$\frac{1}{(r/l)^2}$	2

REX-ISOLDE Faraday cup secondary e- tracking

 More uniform potential distribution Enhanced effectiveness

6. Experimental tests

Definition of I₀

Biasing the repeller ring

ring

higher repelling voltage.

Biasing the signal plate

Biasing repeller ring & signal plate

ring

7. Conclusions

- Current measurements do not agree with the nominal beam current using the present design
- Further improvements in the design are in progress
- Beam profile measurements are unaffected in principle by a change in the design.

Acknowledgements

- The ISOLDE Collaboration
- The HIE-ISOLDE Project Team and groups within CERN Accelerator and Technology Sector
- The Swedish Knut and Alice Wallenberg Foundation (KAW 2005-0121)
- The Belgian Big Science program of the FWO (Research Foundation Flanders) and the Research Council K.U. Leuven
- The CATHI Marie Curie Initial Training Network: EU-FP7-PEOPLE-2010-ITN Project number 264330.
- The Spanish Programme "Industry for Science" from CDTI

0

Thank you!

Work supported by the CATHI Marie Curie actions under contract GA-PITN-2010-264330.