

LHCb upgrade

Electronics Architecture Review

General Architecture & Front-end

Electronics architecture

Front-end electronics: transmit data from every 25ns BX

Electronics architecture

Electronics with DAQ

'CLASSICAL' view from Niko

GBT: custom radiation- hard link over MMF, 3.2 Gbit/s (about 10000)
Input into DAQ network (10/40 Gigabit Ethernet or Infiniband) (1000 to 4000)
Output from DAQ network into compute unit clusters (100 Gbit Ethernet / EDR IB) (200 to 400 links)

General architecture: highlights & open issues

Adopted generic link for FE GBT chipset + Versatile Link (VL) optics

All BE hardware will be common (carrierboard + AMCs) TELL40 for data FE TFC/ECS interface (SOL40) TFC LLT interface

(more from Jean-Pierre)

ATCA baseline technology

Location of TELL40 + switch not yet decided (pit or surface) Long distance transmission with VL under study

Ken Wyllie, CERN

Details of FE architecture

Sub-detector specific blocks 1

Data compression

Driven by cost (minimise links)

Zero-suppression => clear advantage in low occupancy detectors BUT some have high occupancy => no ZS, buy links Compression recipes vary: little common overlap

FE buffer

Use link bandwidth efficiently Riskiest part of system (eg unforeseen background fills up bandwidth) Sub-detectors must make best estimate from simulations use safety factor make system scale-able? If buffer overflow => truncation of payload data

LHCD Sub-detector specific blocks 2

Non-ZS data

Requested by some sub-detectors (for tuning/diagnostics) Send as part of normal data stream (controlled by TFC) Buffering implications to be understood

BXID

Data tagged with BXID early BXID reset is main tool for overall synchronisation All synch-checks, event building, LLT based on BXID Tune-able preset of BXID counter BXID is ALWAYS transmitted as part of header (even during truncation)

Sub-detector specific blocks 3

Fast commands from TFC (see Federico)

Pre-delayed to match transmission latency Resets & other special fast commands Storing instantaneous state of FE (then read thru ECS)

Running modes

Configured by ECS (ie not on-the-fly) Diagnostic patterns for measuring link latencies

Test features

Electrical pulse, triggered light source, cosmics Digital patterns generated by FE

CHECK Generic Sub-Detector Readout & Control

Common items 1

GBTX

Good contact with design team But schedule is a worry Prototypes not yet available

GBT-SCA

Schedule not clear yet: worry Prototypes not yet available

Versatile Link

Proposed schedule OK for LHCb (2014 – 2015) Prototypes available

Common items 2

DC-DC

Tests done with prototypes: successful LHCb deciding on flavours & quantities Can we start producing in 2013?

Low Voltage Power Supplies Plan is to re-use existing systems Estimated quantities of new purchases are small but obsolescence

Spare slides Sub-detector details

VELO pixel

VeloPix chip: 256 x 256 array, 55 x 55 μ m pixels

- Strong overlap with TimePix3 (under design)
- 3 or 4 bits TOT
- Architecture to minimise bandwidth (hottest chip = 12 Gbit/s)
- Serial readout

VELO strips & Silicon Tracker

SALT ASIC under design 128-channels, each with 6-bit ADC On-chip data compression planned (pedestal subtraction, common-mode correction)

SciFi tracker

Fibres coupled to SiPM SiPM Radiation tolerance?

ASIC design starting

Outer tracker

Re-use front end

Implement TDC (1ns) in ACTEL ProASIC FPGA: prototype already working

Calorimeter

MaPMT (baseline) option

CLARO ASIC under design:

- Gain compensation
- Binary output

Digital functions in ACTEL

Muons

40MHz data transmission already – re-use

Ken Wyllie, CERN

MaPMT gain reduction ⇒Reduce electronics noise ⇒Active termination in ASIC (à la ATLAS LAr)

Interleaved integrators

ICECAL in AMS 0.35µm SiGe

hitecture Review, 5th Dec 2012

П

Common developments

ACTEL Flash FPGA for front-end modules

- •Advantages over ASICs: re-programmable!!!
- •Can they survive the radiation....?
- Irradiation programme on-going on A3PE1500

